These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7873740)

  • 1. Acid-base status and intracellular pH regulation in lymphocytes from rats with genetic hypertension.
    Batlle D; Redon J; Gutterman C; LaPointe M; Saleh A; Sharma A; Rombola G; Ye M; Alsheikha W; Gomez L
    J Am Soc Nephrol; 1994 Nov; 5(5 Suppl 1):S12-22. PubMed ID: 7873740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of intracellular pH in the spontaneously hypertensive rat. Role of bicarbonate-dependent transporters.
    Redon J; Batlle D
    Hypertension; 1994 Apr; 23(4):503-12. PubMed ID: 8144220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pHi regulation in myocardium of the spontaneously hypertensive rat. Compensated enhanced activity of the Na(+)-H+ exchanger.
    Pérez NG; Alvarez BV; Camilión de Hurtado MC; Cingolani HE
    Circ Res; 1995 Dec; 77(6):1192-200. PubMed ID: 7586232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DIDS-sensitive pHi regulation in single rat cardiac myocytes in nominally HCO3-free conditions.
    Wu ML; Tsai ML; Tseng YZ
    Circ Res; 1994 Jul; 75(1):123-32. PubMed ID: 8013070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+/H+ and HCO3-/Cl- exchange in the control of intracellular pH in vivo in the spontaneously hypertensive rat.
    Syme PD; Aronson JK; Thompson CH; Williams EM; Green Y; Radda GK
    Clin Sci (Lond); 1991 Dec; 81(6):743-50. PubMed ID: 1662580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of SLC26A transporters involved in the Cl⁻/HCO₃⁻ exchange in proximal tubular cells from WKY and SHR.
    Simão S; Gomes P; Pinho MJ; Soares-da-Silva P
    Life Sci; 2013 Oct; 93(12-14):435-40. PubMed ID: 23933130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enalapril induces regression of cardiac hypertrophy and normalization of pHi regulatory mechanisms.
    Ennis IL; Alvarez BV; Camilión de Hurtado MC; Cingolani HE
    Hypertension; 1998 Apr; 31(4):961-7. PubMed ID: 9535421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence.
    Aickin CC
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):301-16. PubMed ID: 7799229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+/H+ antiporter (NHE-1 isoform) in cultured vascular smooth muscle from the spontaneously hypertensive rat.
    LaPointe MS; Ye M; Moe OW; Alpern RJ; Batlle DC
    Kidney Int; 1995 Jan; 47(1):78-87. PubMed ID: 7731174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic properties of the Na+/H+ antiporter of lymphocytes from the spontaneously hypertensive rat: role of intracellular pH.
    Saleh AM; Batlle DC
    J Clin Invest; 1990 Jun; 85(6):1734-9. PubMed ID: 2161427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: HCO3- dependence.
    Aickin CC
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):317-29. PubMed ID: 7528276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the Na(+)-H+ exchanger modulates angiotensin II-stimulated Na(+)-dependent Mg2+ transport in vascular smooth muscle cells in genetic hypertension.
    Touyz RM; Schiffrin EL
    Hypertension; 1999 Sep; 34(3):442-9. PubMed ID: 10489391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+/H+ exchange in pulmonary artery smooth muscle from spontaneously hypertensive and Wistar-Kyoto rats.
    Silverman ES; Thompson BT; Quinn DA; Kinane TB; Bonventre JV; Hales CA
    Am J Physiol; 1995 Nov; 269(5 Pt 1):L673-80. PubMed ID: 7491988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular pH regulation in cultured rat astrocytes in CO2/HCO3(-)-containing media.
    Mellergård P; Ouyang YB; Siesjö BK
    Exp Brain Res; 1993; 95(3):371-80. PubMed ID: 8224063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.
    Chen GS; Lee SP; Huang SF; Chao SC; Chang CY; Wu GJ; Li CH; Loh SH
    Arch Oral Biol; 2018 Jun; 90():19-26. PubMed ID: 29524788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced intracellular pH in lymphocytes from the spontaneously hypertensive rat.
    Batlle DC; Saleh A; Rombola G
    Hypertension; 1990 Jan; 15(1):97-103. PubMed ID: 2153100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of pH regulatory transport in glomerular mesangial cells.
    Ganz MB; Saksa BA
    Am J Physiol; 1998 Mar; 274(3):F550-5. PubMed ID: 9530271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered Na(+)- H(+)- exchange activity in the spontaneously hypertensive perfused rat heart.
    Schussheim AE; Radda GK
    J Mol Cell Cardiol; 1995 Aug; 27(8):1475-81. PubMed ID: 8523411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular pH regulation in cultured embryonic chick heart cells. Na(+)-dependent Cl-/HCO3- exchange.
    Liu S; Piwnica-Worms D; Lieberman M
    J Gen Physiol; 1990 Dec; 96(6):1247-69. PubMed ID: 1962815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of pH in rat brain synaptosomes. I. Role of sodium, bicarbonate, and potassium.
    Sánchez-Armass S; Martínez-Zaguilán R; Martínez GM; Gillies RJ
    J Neurophysiol; 1994 Jun; 71(6):2236-48. PubMed ID: 7931513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.