These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7873887)

  • 1. Transfer of brain dopamine system-specific quantitative trait loci onto a C57BL/6ByJ background.
    Vadász C; Sziráki I; Murthy LR; Sasvári-Székely M; Kabai P; Laszlovszky I; Fleischer A; Juhász B; Zahorchak R
    Mamm Genome; 1994 Nov; 5(11):735-7. PubMed ID: 7873887
    [No Abstract]   [Full Text] [Related]  

  • 2. Mesencephalic dopamine neuron number and tyrosine hydroxylase content: Genetic control and candidate genes.
    Vadasz C; Smiley JF; Figarsky K; Saito M; Toth R; Gyetvai BM; Oros M; Kovacs KK; Mohan P; Wang R
    Neuroscience; 2007 Nov; 149(3):561-72. PubMed ID: 17920205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic determination of hypothalamic tyrosine hydroxylase activity in mice.
    Sziráki I; Murthy LR; Lajtha A; Vadász C
    Brain Res Bull; 1987 Jan; 18(1):13-8. PubMed ID: 2881614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic determination of mesencephalic tyrosine hydroxylase activity in the mouse.
    Vadász C; Sziráki I; Murthy LR; Vadász I; Badalamenti AF; Kóbor G; Lajtha A
    J Neurogenet; 1987 Aug; 4(5):241-52. PubMed ID: 2889816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic determination of striatal tyrosine hydroxylase activity in mice.
    Vadász C; Sziráki I; Murthy LR; Lajtha A
    Neurochem Res; 1986 Aug; 11(8):1139-49. PubMed ID: 2878381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the mesotelencephalic dopamine system by quantitative-trait locus introgression.
    Vadasz C; Sziraki I; Sasvari M; Kabai P; Murthy LR; Saito M; Laszlovszky I
    Neurochem Res; 1998 Nov; 23(11):1337-54. PubMed ID: 9814544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-dependent variations in number of midbrain dopaminergic neurones.
    Ross RA; Judd AB; Pickel VM; Joh TH; Reis DJ
    Nature; 1976 Dec; 264(5587):654-6. PubMed ID: 12476
    [No Abstract]   [Full Text] [Related]  

  • 8. Gender segregation in gene expression and vulnerability to oxidative stress induced injury in ventral mesencephalic cultures of dopamine neurons.
    Tao Q; Fan X; Li T; Tang Y; Yang D; Le W
    J Neurosci Res; 2012 Jan; 90(1):167-78. PubMed ID: 21919034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perinatal anti-androgen treatment and genotype affect the mesotelencephalic dopamine system and behavior in mice.
    Vadász C; Kobor G; Kabai P; Sziráki I; Vadász I; Lajtha A
    Horm Behav; 1988 Dec; 22(4):528-39. PubMed ID: 2906901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of tyrosine hydroxylase promoter activity during midbrain dopaminergic neuron development.
    Matsushita N; Okada H; Yasoshima Y; Takahashi K; Kiuchi K; Kobayashi K
    J Neurochem; 2002 Jul; 82(2):295-304. PubMed ID: 12124430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter.
    Jaber M; Dumartin B; Sagné C; Haycock JW; Roubert C; Giros B; Bloch B; Caron MG
    Eur J Neurosci; 1999 Oct; 11(10):3499-511. PubMed ID: 10564358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted gene expression in dopamine and serotonin neurons of the mouse brain.
    Zhuang X; Masson J; Gingrich JA; Rayport S; Hen R
    J Neurosci Methods; 2005 Apr; 143(1):27-32. PubMed ID: 15763133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variations in midbrain dopamine cell number: parallel with differences in responses to dopaminergic agonists and in naturalistic behaviors mediated by central dopaminergic systems.
    Fink JS; Reis DJ
    Brain Res; 1981 Oct; 222(2):335-49. PubMed ID: 6116521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: from mouse to man.
    German DC; Schlusselberg DS; Woodward DJ
    J Neural Transm; 1983; 57(4):243-54. PubMed ID: 6140298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic control of the number of dopamine neurons in the brain: relationship to behavior and responses to psychoactive drugs.
    Reis DJ; Fink JS; Baker H
    Res Publ Assoc Res Nerv Ment Dis; 1983; 60():55-75. PubMed ID: 6130586
    [No Abstract]   [Full Text] [Related]  

  • 16. Mesostriatal projections in BALB/c and CBA mice: a quantitative retrograde neuroanatomical tracing study.
    Mattiace LA; Baring MD; Manaye KF; Mihailoff GA; German DC
    Brain Res Bull; 1989; 23(1-2):61-8. PubMed ID: 2478265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factor-induced c-fos expression defines distinct subsets of midbrain dopaminergic neurons.
    Engele J; Schilling K
    Neuroscience; 1996 Jul; 73(2):397-406. PubMed ID: 8783257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-derived differentiation factor increases expression of the tyrosine hydroxylase gene and enzyme activity in cultured dopamine neurons from the rat midbrain.
    Iacovitti L; Evinger MJ; Stull ND
    Brain Res Mol Brain Res; 1992 Dec; 16(3-4):215-22. PubMed ID: 1363326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine hydroxylase activity and its mRNA level in dopaminergic neurons of tenascin gene knockout mouse.
    Fukamauchi F; Mataga N; Wang YJ; Sato S; Yoshiki A; Kusakabe M
    Biochem Biophys Res Commun; 1997 Feb; 231(2):356-9. PubMed ID: 9070278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine hydroxylase mRNA expression by dopaminergic neurons in culture: effect of 1-methyl-4-phenylpyridinium treatment.
    Beck KD; Knusel B; Pasinetti G; Michel PP; Zawadzka H; Goldstein M; Hefti F
    J Neurochem; 1991 Aug; 57(2):527-32. PubMed ID: 1677030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.