These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 78742)

  • 1. Cobalt ions inhibit fast axonal transport of [3H]glycoproteins but not glycosylation.
    Lavoie PA; Hammerschlag R; Tjan A
    Brain Res; 1978 Jun; 149(2):535-40. PubMed ID: 78742
    [No Abstract]   [Full Text] [Related]  

  • 2. Rapid axonal transport in vitro in the sciatic system of the frog of fucose-, glucosamine- and sulphate-containing material.
    Edström A; Mattsson H
    J Neurochem; 1972 Jul; 19(7):1717-29. PubMed ID: 4114447
    [No Abstract]   [Full Text] [Related]  

  • 3. Initiation of fast axonal transport: involvement of calcium during transfer of proteins from Golgi apparatus to the transport system.
    Hammerschlag R; Lavoie PA
    Neuroscience; 1979; 4(8):1195-201. PubMed ID: 91141
    [No Abstract]   [Full Text] [Related]  

  • 4. Accumulation of [3H]fucose-labelled glycoproteins in the Golgi apparatus of dorsal root ganglion neurons during inhibition of fast axonal transport caused by exposure of the ganglion to Co2+-containing or Ca2+-free medium.
    Lavoie PA; Bennett G
    Neuroscience; 1983; 8(2):351-62. PubMed ID: 6188994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of axonal transport: a proposed role for calcium ions.
    Hammerschlag R; Dravid AR; Chiu AY
    Science; 1975 Apr; 188(4185):273-5. PubMed ID: 47182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic characterization of leucine, glucosamine- and fucose-labelled proteins rapidly transported in frog sciatic nerve.
    Edström A; Mattsson H
    J Neurochem; 1973 Dec; 21(6):1499-507. PubMed ID: 4358881
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of cytochalasin B on uptake of glucosamine, leucine and sulphate into nerve cells; incorporation into glycoproteins and rapid axonal transport.
    Anderson KE; Edström A; Mattsson H
    Brain Res; 1972 Dec; 48():343-53. PubMed ID: 4118909
    [No Abstract]   [Full Text] [Related]  

  • 8. Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves.
    Edström A; Hanson M
    Brain Res; 1973 Aug; 58(2):345-54. PubMed ID: 4127873
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of fast axonal transport of [3H]protein by cobalt ions.
    Hammerschlag R; Chiu AY; Dravid AR
    Brain Res; 1976 Sep; 114(2):353-8. PubMed ID: 61058
    [No Abstract]   [Full Text] [Related]  

  • 10. Axonal transport and metabolism of glycoproteins in rat sciatic nerve.
    Toews AD; Saunders BF; Morell P
    J Neurochem; 1982 Nov; 39(5):1348-55. PubMed ID: 6181203
    [No Abstract]   [Full Text] [Related]  

  • 11. Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)fucose and (3H)-glucosamine.
    Bennett G; Di Giamberardino L; Koenig HL; Droz B
    Brain Res; 1973 Sep; 60(1):129-46. PubMed ID: 4126748
    [No Abstract]   [Full Text] [Related]  

  • 12. Relation of somal lipid synthesis to the fast axonal transport of protein and lipid.
    Longo FM; Hammerschlag R
    Brain Res; 1980 Jul; 193(2):471-85. PubMed ID: 6155973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An increase in smooth endoplasmic reticulum and a decrease in Golgi apparatus occur with ionic conditions that block initiation of fast axonal transport.
    Lindsey JD; Hammerschlag R; Ellisman MH
    Brain Res; 1981 Feb; 205(2):275-87. PubMed ID: 6162513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axoplasmic transport of proteins in vitro in primary afferent neurons of frog spinal cord: effect of Ca2+-free incubation conditions.
    Dravid AR; Hammerschlag R
    J Neurochem; 1975 Apr; 24(4):711-8. PubMed ID: 47385
    [No Abstract]   [Full Text] [Related]  

  • 15. Glycosylation as a criterion for defining subpopulations of fast-transported proteins.
    Stone GC; Hammerschlag R
    J Neurochem; 1983 Apr; 40(4):1124-33. PubMed ID: 6187898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus.
    Hammerschlag R; Stone GC; Bolen FA; Lindsey JD; Ellisman MH
    J Cell Biol; 1982 Jun; 93(3):568-75. PubMed ID: 6181072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast axonal transport in vitro in the sciatic system of the frog.
    Edstrom A; Mattsson H
    J Neurochem; 1972 Jan; 19(1):205-21. PubMed ID: 4109872
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of Ca2+ and Mg2+ on rapid axonal transport of proteins in vitro in frog sciatic nerves.
    Edström A
    J Cell Biol; 1974 Jun; 61(3):812-8. PubMed ID: 4134771
    [No Abstract]   [Full Text] [Related]  

  • 19. Acrylamide-induced alterations in axonal transport. Biochemical and autoradiographic studies.
    Harry GJ
    Mol Neurobiol; 1992; 6(2-3):203-16. PubMed ID: 1282332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of cobalt on the initiation of fast axonal transport.
    Stone GC; Hammerschlag R
    Cell Mol Neurobiol; 1981 Mar; 1(1):3-17. PubMed ID: 6179623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.