BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7874417)

  • 1. Reconstruction of images from radiofrequency electron paramagnetic resonance spectra.
    Smith CM; Stevens AD
    Br J Radiol; 1994 Dec; 67(804):1186-95. PubMed ID: 7874417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overmodulation of projections as signal-to-noise enhancement method in EPR imaging.
    Tadyszak K; Boś-Liedke A; Jurga J; Baranowski M; Mrówczyński R; Chlewicki W; Jurga S; Czechowski T
    Magn Reson Chem; 2016 Feb; 54(2):136-42. PubMed ID: 26364566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of local and global angular interpolation applied to spectral-spatial EPR image reconstruction.
    Ahn KH; Halpern HJ
    Med Phys; 2007 Mar; 34(3):1047-52. PubMed ID: 17441251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy.
    Murugesan R; Cook JA; Devasahayam N; Afeworki M; Subramanian S; Tschudin R; Larsen JA; Mitchell JB; Russo A; Krishna MC
    Magn Reson Med; 1997 Sep; 38(3):409-14. PubMed ID: 9339442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional whole body imaging of spin probes in mice by time-domain radiofrequency electron paramagnetic resonance.
    Afeworki M; van Dam GM; Devasahayam N; Murugesan R; Cook J; Coffin D; Larsen JH; Mitchell JB; Subramanian S; Krishna MC
    Magn Reson Med; 2000 Mar; 43(3):375-82. PubMed ID: 10725880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization-based image reconstruction from sparsely sampled data in electron paramagnetic resonance imaging.
    Qiao Z; Zhang Z; Pan X; Epel B; Redler G; Xia D; Halpern H
    J Magn Reson; 2018 Sep; 294():24-34. PubMed ID: 30005191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging.
    Komarov DA; Samouilov A; Ahmad R; Zweier JL
    J Magn Reson; 2020 Oct; 319():106812. PubMed ID: 32966948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of maximum entropy and filtered back-projection methods to reconstruct rapid-scan EPR images.
    Tseitlin M; Dhami A; Eaton SS; Eaton GR
    J Magn Reson; 2007 Jan; 184(1):157-68. PubMed ID: 17070083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments.
    Enomoto A; Hirata H
    J Magn Reson; 2014 Feb; 239():29-33. PubMed ID: 24374749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iterative reconstruction algorithm without system matrix for EPR imaging.
    Qiao Z; Lu Y; Liu P; Epel B; Halpern H
    J Magn Reson; 2022 Nov; 344():107307. PubMed ID: 36308904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robustness assessment of 1-d electron paramagnetic resonance for improved magnetic nanoparticle reconstructions.
    Coene A; Crevecoeur G; Dupre L
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1635-43. PubMed ID: 25667347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-stepped Zeeman field offset method applied in acquiring enhanced resolution spin-echo electron paramagnetic resonance images.
    Seifi P; Epel B; Mailer C; Halpern HJ
    Med Phys; 2010 Oct; 37(10):5412-20. PubMed ID: 21089777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral fitting: the extraction of crucial information from a spectrum and a spectral image.
    Mailer C; Robinson BH; Williams BB; Halpern HJ
    Magn Reson Med; 2003 Jun; 49(6):1175-80. PubMed ID: 12768596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive EPR imaging with adaptive projection acquisition.
    Deng Y; Kuppusamy P; Zweier JL
    J Magn Reson; 2005 Jun; 174(2):177-87. PubMed ID: 15862233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment and comparison of algorithms for in vivo ESR-CT imaging of bioradicals with L-band microwaves.
    Yuasa T; Tamura A; Ogata T; Akatsuka T; Kamada H
    Front Med Biol Eng; 1996; 7(4):311-30. PubMed ID: 8956971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconvolution algorithm based on automatic cutoff frequency selection for EPR imaging.
    Deng Y; He G; Kuppusamy P; Zweier JL
    Magn Reson Med; 2003 Aug; 50(2):444-8. PubMed ID: 12876725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic approach to cutoff frequency selection in continuous-wave electron paramagnetic resonance imaging.
    Hirata H; Itoh T; Hosokawa K; Deng Y; Susaki H
    J Magn Reson; 2005 Aug; 175(2):177-84. PubMed ID: 15882954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR imaging: the relationship between CW spectra acquired from an extended sample subjected to fixed stepped gradients and the Radon transform of the resonance density.
    Williams BB; Pan X; Halpern HJ
    J Magn Reson; 2005 May; 174(1):88-96. PubMed ID: 15809176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues.
    Kuppusamy P; Chzhan M; Zweier JL
    J Magn Reson B; 1995 Feb; 106(2):122-30. PubMed ID: 7850182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of individual absorbed doses by tooth enamel on the base of non-linear simulation of their EPR-spectra.
    Dubovsky S; Kirillov V
    Appl Radiat Isot; 2001 May; 54(5):833-7. PubMed ID: 11258533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.