These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7874421)

  • 1. Calculation of radiation induced complication probabilities for brain, liver and kidney, and the use of a reliability model to estimate critical volume fractions.
    Olsen DR; Kambestad BK; Kristoffersen DT
    Br J Radiol; 1994 Dec; 67(804):1218-25. PubMed ID: 7874421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation.
    Begnozzi L; Gentile FP; Di Nallo AM; Chiatti L; Zicari C; Consorti R; Benassi M
    Strahlenther Onkol; 1994 Oct; 170(10):590-4. PubMed ID: 7974170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation.
    Yorke ED; Kutcher GJ; Jackson A; Ling CC
    Radiother Oncol; 1993 Mar; 26(3):226-37. PubMed ID: 8316652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complication probability as assessed from dose-volume histograms.
    Lyman JT
    Radiat Res Suppl; 1985; 8():S13-9. PubMed ID: 3867079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation.
    Jackson A; Kutcher GJ; Yorke ED
    Med Phys; 1993; 20(3):613-25. PubMed ID: 8350812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inclusion of biological factors in parallel-architecture normal-tissue complication probability model for radiation-induced liver disease.
    Cheng JC; Liu HS; Wu JK; Chung HW; Jan GJ
    Int J Radiat Oncol Biol Phys; 2005 Jul; 62(4):1150-6. PubMed ID: 15990021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model.
    Jackson A; Ten Haken RK; Robertson JM; Kessler ML; Kutcher GJ; Lawrence TS
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):883-91. PubMed ID: 7860402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing irradiation techniques for para-aortic lymph nodes: dose distribution and NTCP for the kidney.
    Nevinny-Stickel M; Seppi T; Poljanc K; Forthuber BC; Posch A; Lechner J; Ulmer H; Sweeney R; Saurer M; Lukas P
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1206-13. PubMed ID: 15978740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data.
    Nioutsikou E; Partridge M; Bedford JL; Webb S
    Phys Med Biol; 2005 Mar; 50(6):1035-46. PubMed ID: 15798307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of normal tissue complication probability of the lung using a reliability model.
    Vågane R; Olsen DR
    Acta Oncol; 2006; 45(5):610-7. PubMed ID: 16864177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data.
    Semenenko VA; Li XA
    Phys Med Biol; 2008 Feb; 53(3):737-55. PubMed ID: 18199912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Possibilities and limitations of isoeffective models in the assessment of the equivalence of courses of fractionated irradiation].
    Akimov AA; Kozlov AP
    Med Radiol (Mosk); 1991; 36(9):14-9. PubMed ID: 1943578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models in radiotherapy: volume effects.
    Schultheiss TE; Orton CG; Peck RA
    Med Phys; 1983; 10(4):410-5. PubMed ID: 6888354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture.
    Niemierko A; Goitein M
    Radiother Oncol; 1991 Mar; 20(3):166-76. PubMed ID: 1852908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster models of dose-volume effects.
    Thames HD; Zhang M; Tucker SL; Liu HH; Dong L; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Aug; 59(5):1491-504. PubMed ID: 15275737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for optimizing normal tissue complication probability in the spinal cord using a generalized incomplete repair scheme.
    Levin-Plotnik D; Hamilton RJ; Niemierko A; Akselrod S
    Radiat Res; 2001 Apr; 155(4):593-602. PubMed ID: 11260661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late effects of abdominal irradiation in children: a review of the literature.
    Bölling T; Willich N; Ernst I
    Anticancer Res; 2010 Jan; 30(1):227-31. PubMed ID: 20150640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP).
    Jensen I; Carl J; Lund B; Larsen EH; Nielsen J
    Med Dosim; 2011; 36(2):130-7. PubMed ID: 20488692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors.
    Balter JM; Brock KK; Lam KL; Tatro D; Dawson LA; McShan DL; Ten Haken RK
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):610-4. PubMed ID: 16095848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional data analysis in NTCP modeling: a new method to explore the radiation dose-volume effects.
    Benadjaoud MA; Blanchard P; Schwartz B; Champoudry J; Bouaita R; Lefkopoulos D; Deutsch E; Diallo I; Cardot H; de Vathaire F
    Int J Radiat Oncol Biol Phys; 2014 Nov; 90(3):654-63. PubMed ID: 25304951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.