BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7874453)

  • 21. Organisation of Xenopus oocyte and egg cortices.
    Chang P; Pérez-Mongiovi D; Houliston E
    Microsc Res Tech; 1999 Mar; 44(6):415-29. PubMed ID: 10211675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus.
    Traas JA; Doonan JH; Rawlins DJ; Shaw PJ; Watts J; Lloyd CW
    J Cell Biol; 1987 Jul; 105(1):387-95. PubMed ID: 2440896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene.
    Gard DL; Affleck D; Error BM
    Dev Biol; 1995 Mar; 168(1):189-201. PubMed ID: 7883073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.
    Kloc M; Bilinski S; Kubiak JZ
    Methods Mol Biol; 2016; 1457():179-90. PubMed ID: 27557581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actin is a major structural and functional element of the egg cortex of giant silkmoths during oogenesis.
    Watson CA; Sauman I; Berry SJ
    Dev Biol; 1993 Feb; 155(2):315-23. PubMed ID: 8432390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of animal-vegetal polarity during maturation in ascidian oocytes.
    Prodon F; Chenevert J; Sardet C
    Dev Biol; 2006 Feb; 290(2):297-311. PubMed ID: 16405883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Contractile proteins and nonerythroid spectrin in the oogenesis of the clawed toad].
    Riabova LV; Virtanen I; Vartiovaara J; Vasetskiĭ SG
    Ontogenez; 1992; 23(5):487-500. PubMed ID: 1461633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of changes in F-actin during maturation of starfish oocytes.
    Heil-Chapdelaine RA; Otto JJ
    Dev Biol; 1996 Jul; 177(1):204-16. PubMed ID: 8660888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. alpha-Spectrin has a stage-specific asymmetrical localization during Xenopus oogenesis.
    Carotenuto R; Vaccaro MC; Capriglione T; Petrucci TC; Campanella C
    Mol Reprod Dev; 2000 Feb; 55(2):229-39. PubMed ID: 10618663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.
    Spracklen AJ; Fagan TN; Lovander KE; Tootle TL
    Dev Biol; 2014 Sep; 393(2):209-226. PubMed ID: 24995797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filamentous-actins in human hepatocarcinoma cells with CLSM.
    Huo X; Xu XJ; Chen YW; Yang HW; Piao ZX
    World J Gastroenterol; 2004 Jun; 10(11):1666-8. PubMed ID: 15162547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytoskeleton of the Drosophila egg chamber: new observations on microfilament distribution during oocyte growth.
    Riparbelli MG; Callaini G
    Cell Motil Cytoskeleton; 1995; 31(4):298-306. PubMed ID: 7553916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contractile ring formation in Xenopus egg and fission yeast.
    Noguchi T; Arai R; Motegi F; Nakano K; Mabuchi I
    Cell Struct Funct; 2001 Dec; 26(6):545-54. PubMed ID: 11942608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in nuclear localization of An3, a RNA helicase, during oogenesis and embryogenesis in Xenopus laevis.
    Longo FJ; Mathews L; Gururajan R; Chen J; Weeks DL
    Mol Reprod Dev; 1996 Dec; 45(4):491-502. PubMed ID: 8956288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes.
    Kloc M; Wilk K; Vargas D; Shirato Y; Bilinski S; Etkin LD
    Development; 2005 Aug; 132(15):3445-57. PubMed ID: 16000384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of prominent actin filaments in the root columella.
    Collings DA; Zsuppan G; Allen NS; Blancaflor EB
    Planta; 2001 Feb; 212(3):392-403. PubMed ID: 11289604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of prosome proteins and their relationship with the cytoskeleton in oogenesis of Xenopus laevis.
    Ryabova LV; Virtanen I; Olink-Coux M; Scherrer K; Vassetzky SG
    Mol Reprod Dev; 1994 Feb; 37(2):195-203. PubMed ID: 8179902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes.
    Vaccaro MC; Wilding M; Dale B; Campanella C; Carotenuto R
    Zygote; 2012 Aug; 20(3):237-42. PubMed ID: 21492502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein.
    Ankenbauer T; Kleinschmidt JA; Vandekerckhove J; Franke WW
    J Cell Biol; 1988 Oct; 107(4):1489-98. PubMed ID: 2844829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.