These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7874555)
21. Reconstruction of a human ligamentous lumbar spine using CT images--a three-dimensional finite element mesh generation. Breau C; Shirazi-Adl A; de Guise J Ann Biomed Eng; 1991; 19(3):291-302. PubMed ID: 1928871 [TBL] [Abstract][Full Text] [Related]
22. Dimensions of human lumbar vertebrae in the sagittal plane. Nissan M; Gilad I J Biomech; 1986; 19(9):753-8. PubMed ID: 3793749 [TBL] [Abstract][Full Text] [Related]
23. How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. Noailly J; Wilke HJ; Planell JA; Lacroix D J Biomech; 2007; 40(11):2414-25. PubMed ID: 17257603 [TBL] [Abstract][Full Text] [Related]
24. Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance. Su JC; Li ZD; Cao LH; Yu BQ; Zhang CC; Li M Chin J Traumatol; 2009 Jun; 12(3):153-6. PubMed ID: 19486557 [TBL] [Abstract][Full Text] [Related]
25. Influence of morphological variations on cervical spine segmental responses from inertial loading. John JD; Yoganandan N; Arun MWJ; Saravana Kumar G Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503 [TBL] [Abstract][Full Text] [Related]
26. Impact of spinal rod stiffness on porcine lumbar biomechanics: Finite element model validation and parametric study. Brummund M; Brailovski V; Petit Y; Facchinello Y; Mac-Thiong JM Proc Inst Mech Eng H; 2017 Dec; 231(12):1071-1080. PubMed ID: 28927347 [TBL] [Abstract][Full Text] [Related]
27. Impact of material and morphological parameters on the mechanical response of the lumbar spine - A finite element sensitivity study. Zander T; Dreischarf M; Timm AK; Baumann WW; Schmidt H J Biomech; 2017 Feb; 53():185-190. PubMed ID: 28010945 [TBL] [Abstract][Full Text] [Related]
28. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Lafage V; Gangnet N; Sénégas J; Lavaste F; Skalli W Spine (Phila Pa 1976); 2007 Jul; 32(16):1706-13. PubMed ID: 17632390 [TBL] [Abstract][Full Text] [Related]
29. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. Dreischarf M; Zander T; Shirazi-Adl A; Puttlitz CM; Adam CJ; Chen CS; Goel VK; Kiapour A; Kim YH; Labus KM; Little JP; Park WM; Wang YH; Wilke HJ; Rohlmann A; Schmidt H J Biomech; 2014 Jun; 47(8):1757-66. PubMed ID: 24767702 [TBL] [Abstract][Full Text] [Related]
30. Cancellous bone Young's modulus variation within the vertebral body of a ligamentous lumbar spine--application of bone adaptive remodeling concepts. Goel VK; Ramirez SA; Kong W; Gilbertson LG J Biomech Eng; 1995 Aug; 117(3):266-71. PubMed ID: 8618378 [TBL] [Abstract][Full Text] [Related]
31. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology. Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515 [TBL] [Abstract][Full Text] [Related]
32. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery. Kim H; Lim DH; Oh HJ; Lee KY; Lee SJ Biomed Mater; 2011 Oct; 6(5):055005. PubMed ID: 21849724 [TBL] [Abstract][Full Text] [Related]
33. Sensitivity of lumbar spine loading to anatomical parameters. Putzer M; Ehrlich I; Rasmussen J; Gebbeken N; Dendorfer S J Biomech; 2016 Apr; 49(6):953-958. PubMed ID: 26680014 [TBL] [Abstract][Full Text] [Related]
34. Finite element modeling of the growth plate in a detailed spine model. Sylvestre PL; Villemure I; Aubin CE Med Biol Eng Comput; 2007 Oct; 45(10):977-88. PubMed ID: 17687580 [TBL] [Abstract][Full Text] [Related]
35. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment. Huang J; Yan H; Jian F; Wang X; Li H Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132 [TBL] [Abstract][Full Text] [Related]
36. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study. Naserkhaki S; Jaremko JL; El-Rich M J Biomech; 2016 Sep; 49(13):2909-2917. PubMed ID: 27448498 [TBL] [Abstract][Full Text] [Related]
37. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models. Campbell JQ; Coombs DJ; Rao M; Rullkoetter PJ; Petrella AJ J Biomech; 2016 Sep; 49(13):2669-2676. PubMed ID: 27291694 [TBL] [Abstract][Full Text] [Related]
38. Differences in lumbar spine load due to posture and upper limb external load. Kamińska J; Roman-Liu D; Zagrajek T; Borkowski P Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261 [TBL] [Abstract][Full Text] [Related]
39. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities. McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633 [TBL] [Abstract][Full Text] [Related]
40. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Whyne CM; Hu SS; Lotz JC Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]