These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7874555)

  • 41. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis.
    Guan Y; Yoganandan N; Maiman DJ; Pintar FA
    J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [A planar nonlinear model of the human spine].
    Nolte LP; Pingel TH
    Biomed Tech (Berl); 1991 Dec; 36(12):298-304. PubMed ID: 1793792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of nucleus replacement device properties on lumbar spine mechanics.
    Rundell SA; Guerin HL; Auerbach JD; Kurtz SM
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2022-32. PubMed ID: 19730210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-Linear Filtering Technique Used for Testing the Human Lumbar Spine FEA Model.
    Punarselvam E; Suresh P
    J Med Syst; 2019 Jan; 43(2):34. PubMed ID: 30612250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Method to geometrically personalize a detailed finite-element model of the spine.
    Lalonde NM; Petit Y; Aubin CE; Wagnac E; Arnoux PJ
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2014-21. PubMed ID: 23434601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biomechanical influence of the facet joint orientation and the facet tropism in the lumbar spine.
    Kim HJ; Chun HJ; Lee HM; Kang KT; Lee CK; Chang BS; Yeom JS
    Spine J; 2013 Oct; 13(10):1301-8. PubMed ID: 24035730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment.
    Meijer GJ; Homminga J; Hekman EE; Veldhuizen AG; Verkerke GJ
    J Biomech; 2010 May; 43(8):1590-7. PubMed ID: 20206933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.
    Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR
    Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Cervico-Thoraco-Lumbar Multibody Dynamic Model for the Estimation of Joint Loads and Muscle Forces.
    Khurelbaatar T; Kim K; Hyuk Kim Y
    J Biomech Eng; 2015 Nov; 137(11):111001. PubMed ID: 26292160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of different material theories used in a FE model of a lumbar segment motion.
    Gohari E; Nikkhoo M; Haghpanahi M; Parnianpour M
    Acta Bioeng Biomech; 2013; 15(2):33-41. PubMed ID: 23952458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Geometry strongly influences the response of numerical models of the lumbar spine--a probabilistic finite element analysis.
    Niemeyer F; Wilke HJ; Schmidt H
    J Biomech; 2012 May; 45(8):1414-23. PubMed ID: 22436639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution.
    Ezquerro F; García Vacas F; Postigo S; Prado M; Simón A
    Med Eng Phys; 2011 Jan; 33(1):89-95. PubMed ID: 20952242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical analysis of the thoracolumbar spine under physiological loadings: Experimental motion data corridors for validation of finite element models.
    Couvertier M; Germaneau A; Saget M; Dupré JC; Doumalin P; Brémand F; Hesser F; Brèque C; Roulaud M; Monlezun O; Vendeuvre T; Rigoard P
    Proc Inst Mech Eng H; 2017 Oct; 231(10):975-981. PubMed ID: 28707505
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging.
    Aiyangar AK; Zheng L; Tashman S; Anderst WJ; Zhang X
    J Biomech Eng; 2014 Jan; 136(1):011004. PubMed ID: 24149991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of disc degeneration on the mechanical behavior of the human lumbar spine: a probabilistic finite element study.
    Bashkuev M; Reitmaier S; Schmidt H
    Spine J; 2018 Oct; 18(10):1910-1920. PubMed ID: 29886164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment.
    Pitzen T; Geisler FH; Matthis D; Müller-Storz H; Pedersen K; Steudel WI
    Eur Spine J; 2001 Feb; 10(1):23-9. PubMed ID: 11276832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus.
    Schmidt H; Heuer F; Simon U; Kettler A; Rohlmann A; Claes L; Wilke HJ
    Clin Biomech (Bristol); 2006 May; 21(4):337-44. PubMed ID: 16439042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computer simulation of lumbar flexion shows shear of the facet capsular ligament.
    Claeson AA; Barocas VH
    Spine J; 2017 Jan; 17(1):109-119. PubMed ID: 27520078
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine: a finite element study.
    Rousseau MA; Bonnet X; Skalli W
    Spine (Phila Pa 1976); 2008 Jan; 33(1):E10-4. PubMed ID: 18165735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.