These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7874555)
61. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5: anatomic and finite element investigations. Ivanov AA; Faizan A; Ebraheim NA; Yeasting R; Goel VK Spine (Phila Pa 1976); 2007 Oct; 32(22):2462-6. PubMed ID: 18090086 [TBL] [Abstract][Full Text] [Related]
62. [A digital model for lumbar motion segment reconstruction and three-dimensional visualization]. Fu D; Jin AM; Min SX; Luo Y; Zhang Y Nan Fang Yi Ke Da Xue Xue Bao; 2007 Sep; 27(9):1376-8. PubMed ID: 17884783 [TBL] [Abstract][Full Text] [Related]
63. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study. Naserkhaki S; Jaremko JL; Adeeb S; El-Rich M J Biomech; 2016 Apr; 49(6):974-982. PubMed ID: 26493346 [TBL] [Abstract][Full Text] [Related]
64. Three-dimensional static modeling of the lumbar spine. Karadogan E; Williams RL J Biomech Eng; 2012 Aug; 134(8):084504. PubMed ID: 22938364 [TBL] [Abstract][Full Text] [Related]
65. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics]. Zhang Z; Li Y; Liao Z; Liu W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1196-202. PubMed ID: 29715419 [TBL] [Abstract][Full Text] [Related]
66. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. Erbulut DU; Zafarparandeh I; Hassan CR; Lazoglu I; Ozer AF J Neurosurg Spine; 2015 Aug; 23(2):200-8. PubMed ID: 25932601 [TBL] [Abstract][Full Text] [Related]
67. [Finite element analysis on stress change of the lumbar disc degeneration]. Yan JZ; Wu ZH; Wang XS; Xing ZJ; Zhao Y; Zhang JG; Wang YP; Qiu GX Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2009 Aug; 31(4):464-7. PubMed ID: 19771735 [TBL] [Abstract][Full Text] [Related]
68. An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine. Campbell JQ; Petrella AJ IEEE Trans Biomed Eng; 2015 Nov; 62(11):2709-16. PubMed ID: 26080375 [TBL] [Abstract][Full Text] [Related]
69. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine]. Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033 [TBL] [Abstract][Full Text] [Related]
70. Influence of interpersonal geometrical variation on spinal motion segment stiffness: implications for patient-specific modeling. Meijer GJ; Homminga J; Veldhuizen AG; Verkerke GJ Spine (Phila Pa 1976); 2011 Jun; 36(14):E929-35. PubMed ID: 21289568 [TBL] [Abstract][Full Text] [Related]
71. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models. Guo LX; Teo EC Proc Inst Mech Eng H; 2005 Jul; 219(4):277-84. PubMed ID: 16050218 [TBL] [Abstract][Full Text] [Related]
72. Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing. Najarian S; Dargahi J; Heidari B Biomed Mater Eng; 2005; 15(3):145-58. PubMed ID: 15911996 [TBL] [Abstract][Full Text] [Related]
73. [Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method]. Aubin CE; Descrimes JL; Dansereau J; Skalli W; Lavaste F; Labelle H Ann Chir; 1995; 49(8):749-61. PubMed ID: 8561431 [TBL] [Abstract][Full Text] [Related]
74. Development of a vertebral endplate 3-D reconstruction technique. Huynh TN; Dansereau J; Maurais G IEEE Trans Med Imaging; 1997 Oct; 16(5):689-96. PubMed ID: 9368125 [TBL] [Abstract][Full Text] [Related]
75. Finite element analysis for comparison of spinous process osteotomies technique with conventional laminectomy as lumbar decompression procedure. Kim HJ; Chun HJ; Kang KT; Lee HM; Chang BS; Lee CK; Yeom JS Yonsei Med J; 2015 Jan; 56(1):146-53. PubMed ID: 25510758 [TBL] [Abstract][Full Text] [Related]
76. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model. Chagnon A; Aubin CE; Villemure I J Biomech Eng; 2010 Nov; 132(11):111006. PubMed ID: 21034147 [TBL] [Abstract][Full Text] [Related]
77. Posterior facet load changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study. Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB J Spinal Disord Tech; 2012 Jun; 25(4):218-25. PubMed ID: 22652989 [TBL] [Abstract][Full Text] [Related]
78. Role of facet curvature for accurate vertebral facet load analysis. Holzapfel GA; Stadler M Eur Spine J; 2006 Jun; 15(6):849-56. PubMed ID: 15912350 [TBL] [Abstract][Full Text] [Related]
79. Vibration modes of injured spine at resonant frequencies under vertical vibration. Guo LX; Zhang M; Zhang YM; Teo EC Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200 [TBL] [Abstract][Full Text] [Related]
80. [Biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy]. Qian J; Yu SS; Liu JJ; Chen L; Jing JH Zhonghua Yi Xue Za Zhi; 2018 Apr; 98(13):1013-1018. PubMed ID: 29690712 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]