These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7874743)

  • 1. Characterization of genome plasticity in Ustilago hordei.
    McCluskey K; Agnan J; Mills D
    Curr Genet; 1994; 26(5-6):486-93. PubMed ID: 7874743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins and inheritance of chromosome-length polymorphisms in the barley covered smut fungus, Ustilago hordei.
    Gaudet DA; Gusse J; Laroche A
    Curr Genet; 1998 Mar; 33(3):216-24. PubMed ID: 9508796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fil1, a G-protein alpha-subunit that acts upstream of cAMP and is essential for dimorphic switching in haploid cells of Ustilago hordei.
    Lichter A; Mills D
    Mol Gen Genet; 1997 Oct; 256(4):426-35. PubMed ID: 9393440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telomere-associated RFLPs and electrophoretic karyotyping reveal lineage relationships among race-specific strains of Ustilago hordei.
    Abdennadher M; Mills D
    Curr Genet; 2000 Oct; 38(3):141-7. PubMed ID: 11057447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region.
    Lee N; Bakkeren G; Wong K; Sherwood JE; Kronstad JW
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):15026-31. PubMed ID: 10611332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals.
    Bakkeren G; Jiang G; Warren RL; Butterfield Y; Shin H; Chiu R; Linning R; Schein J; Lee N; Hu G; Kupfer DM; Tang Y; Roe BA; Jones S; Marra M; Kronstad JW
    Fungal Genet Biol; 2006 Sep; 43(9):655-66. PubMed ID: 16793293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei.
    Linning R; Lin D; Lee N; Abdennadher M; Gaudet D; Thomas P; Mills D; Kronstad JW; Bakkeren G
    Genetics; 2004 Jan; 166(1):99-111. PubMed ID: 15020410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of genetic variation in Ustilago maydis strains by probes derived from telomeric sequences.
    Sánchez-Alonso P; Valverde ME; Paredes-López O; Guzmán P
    Microbiology (Reading); 1996 Oct; 142 ( Pt 10)():2931-6. PubMed ID: 8885409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of mitochondrial DNA by a transformation vector for Ustilago violacea.
    Bej AK; Perlin MH
    Gene; 1991 Feb; 98(1):135-40. PubMed ID: 2013405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi.
    Bakkeren G; Kronstad JW
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7085-9. PubMed ID: 7913746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bacterial artificial chromosome based physical map of the Ustilago maydis genome.
    Meksem K; Shultz J; Tebbji F; Jamai A; Henrich J; Kranz H; Arenz M; Schlueter T; Ishihara H; Jyothi LN; Zhang HB; Lightfoot DA
    Genome; 2005 Apr; 48(2):207-16. PubMed ID: 15838542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome III of Saccharomyces cerevisiae: an ordered clone bank, a detailed restriction map and analysis of transcripts suggest the presence of 160 genes.
    Yoshikawa A; Isono K
    Yeast; 1990; 6(5):383-401. PubMed ID: 2220074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular karyotyping and chromosome length polymorphism in Cochliobolus sativus.
    Zhong S; Steffenson BJ
    Mycol Res; 2007 Jan; 111(Pt 1):78-86. PubMed ID: 17161941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of the karyotype of Ustilago maydis.
    Kinscherf TG; Leong SA
    Chromosoma; 1988; 96(6):427-33. PubMed ID: 3219913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monomorphic subtelomeric DNA in the filamentous fungus, Metarhizium anisopliae,contains a RecQ helicase-like gene.
    Inglis PW; Rigden DJ; Mello LV; Louis EJ; Valadares-Inglis MC
    Mol Genet Genomics; 2005 Aug; 274(1):79-90. PubMed ID: 15931527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of pigmentation of Ustilago hordei: the effect of pH, thiamine, and involvement of the cAMP cascade.
    Lichter A; Mills D
    Fungal Genet Biol; 1998 Oct; 25(1):63-74. PubMed ID: 9806807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains.
    Mäntylä AL; Rossi KH; Vanhanen SA; Penttilä ME; Suominen PL; Nevalainen KM
    Curr Genet; 1992 May; 21(6):471-7. PubMed ID: 1617736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed-field gel electrophoretic analysis of Schizophyllum commune chromosomal DNA.
    Horton JS; Raper CA
    Curr Genet; 1991 Feb; 19(2):77-80. PubMed ID: 2065365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression.
    Donaldson ME; Ostrowski LA; Goulet KM; Saville BJ
    BMC Genomics; 2017 May; 18(1):340. PubMed ID: 28464849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status.
    Russell BW; Mills D
    Mol Plant Microbe Interact; 1993; 6(1):66-74. PubMed ID: 8439671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.