BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7874905)

  • 1. In vivo effects of prostacyclin on segmental vascular resistances, on myogenic reactivity, and on capillary fluid exchange in cat skeletal muscle.
    Jahr J; Ekelund U; Grände PO
    Crit Care Med; 1995 Mar; 23(3):523-31. PubMed ID: 7874905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostacyclin counteracts the increase in capillary permeability induced by tumour necrosis factor-alpha.
    Jahr J; Grände PO
    Intensive Care Med; 1996 Dec; 22(12):1453-60. PubMed ID: 8986503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral circulatory effects of pump perfusion on cat skeletal muscle with and without prostacyclin.
    Jahr J; Grände PO
    Acta Physiol Scand; 1997 Feb; 159(2):93-100. PubMed ID: 9055935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-dose prostacyclin is superior to terbutaline and aminophylline in reducing capillary permeability in cat skeletal muscle in vivo.
    Möller AD; Grände PO
    Crit Care Med; 1999 Jan; 27(1):130-6. PubMed ID: 9934906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-dose prostacyclin has potent capillary permeability-reducing effect in cat skeletal muscle in vivo.
    Möller AD; Grände PO
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H200-7. PubMed ID: 9249491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capillary filtration coefficient for evaluation of capillary fluid permeability in cat calf muscles.
    Kongstad L; Grände PO
    Acta Physiol Scand; 1998 Oct; 164(2):201-11. PubMed ID: 9805107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone.
    Mellander S; Maspers M; Björnberg J; Andersson LO
    Acta Physiol Scand; 1987 Mar; 129(3):337-51. PubMed ID: 2883809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Macro- and microhemodynamics and transcapillary fluid exchange in skeletal muscle and the intestines after intra-arterial injection of obsidan and corinfar].
    Kostko SZ; Shil'krut BL; Stepanova TG
    Fiziol Zh SSSR Im I M Sechenova; 1986 Sep; 72(9):1310-8. PubMed ID: 3781060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of glyceryl trinitrate, nitroprusside and nitric oxide on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U
    Acta Physiol Scand; 1994 Sep; 152(1):93-105. PubMed ID: 7810336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle.
    Ekelund U; Albert U; Edvinsson L; Mellander S
    Acta Physiol Scand; 1993 Jul; 148(3):273-83. PubMed ID: 8213182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on capillary fluid permeability and fluid exchange of albumin, dextran, gelatin, and hydroxyethyl starch in cat skeletal muscle.
    Holbeck S; Grände PO
    Crit Care Med; 2000 Apr; 28(4):1089-95. PubMed ID: 10809288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo effects of endothelin-2, endothelin-3 and ETA receptor blockade on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U
    Acta Physiol Scand; 1994 Jan; 150(1):47-56. PubMed ID: 8135123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thiopental on resistance vessels in cat skeletal muscle.
    Grände PO; Gustafsson D; Lindberg L
    Intensive Care Med; 1990; 16(6):399-404. PubMed ID: 2246423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of selective ETB-receptor stimulation on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U; Adner M; Edvinsson L; Mellander S
    Br J Pharmacol; 1994 Jul; 112(3):887-94. PubMed ID: 7921617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.
    Björnberg J; Maspers M; Mellander S
    Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microvascular mechanisms involved in calcium antagonist edema formation.
    Gustafsson D
    J Cardiovasc Pharmacol; 1987; 10 Suppl 1():S121-31. PubMed ID: 2442504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma volume expansion and transcapillary fluid exchange in skeletal muscle of albumin, dextran, gelatin, hydroxyethyl starch, and saline after trauma in the cat.
    Persson J; Grände PO
    Crit Care Med; 2006 Sep; 34(9):2456-62. PubMed ID: 16850004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelin-1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat Skeletal muscle.
    Bentzer P; Holbeck S; Grände PO
    Microvasc Res; 2002 Jan; 63(1):50-60. PubMed ID: 11749072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostacyclin reduces microvascular fluid conductivity in cat skeletal muscle through opening of ATP-dependent potassium channels.
    Bentzer P; Holbeck S; Grände PO
    J Vasc Res; 1999; 36(6):516-23. PubMed ID: 10629428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endotoxin increases both protein and fluid microvascular permeability in cat skeletal muscle.
    Holbeck S; Grände PO
    Crit Care Med; 2003 Feb; 31(2):560-5. PubMed ID: 12576966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.