These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 7875028)

  • 1. Actions of isoproterenol on amygdalar neurons in vitro.
    Huang CC; Tsai JJ; Gean PW
    Chin J Physiol; 1994; 37(2):73-8. PubMed ID: 7875028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala.
    Huang CC; Hsu KS; Gean PW
    J Neurosci; 1996 Feb; 16(3):1026-33. PubMed ID: 8558230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective enhancement of P-type calcium currents by isoproterenol in the rat amygdala.
    Huang CC; Wang SJ; Gean PW
    J Neurosci; 1998 Mar; 18(6):2276-82. PubMed ID: 9482812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained enhancement of NMDA receptor-mediated synaptic potential by isoproterenol in rat amygdalar slices.
    Gean PW; Huang CC; Lin JH; Tsai JJ
    Brain Res; 1992 Oct; 594(2):331-4. PubMed ID: 1360324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-modulation of synaptic plasticity by beta-adrenergic and 5-HT1A receptors in the rat basolateral amygdala.
    Wang SJ; Cheng LL; Gean PW
    J Neurosci; 1999 Jan; 19(2):570-7. PubMed ID: 9880577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala.
    Wang SJ; Huang CC; Hsu KS; Tsai JJ; Huang CC; Gean PW
    Neurosci Lett; 1996 Aug; 214(2-3):87-90. PubMed ID: 8878090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of NMDA receptor-mediated synaptic potential by isoproterenol is blocked by Rp-adenosine 3',5'-cyclic monophosphothioate.
    Huang CC; Tsai JJ; Gean PW
    Neurosci Lett; 1993 Oct; 161(2):207-10. PubMed ID: 7903801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transient potassium current, the A-current, is involved in spike frequency adaptation in rat amygdala neurons.
    Gean PW; Shinnick-Gallagher P
    Brain Res; 1989 Feb; 480(1-2):160-9. PubMed ID: 2540874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic adenosine-3',5'-monophosphate potentiates the synaptic potential mediated by NMDA receptors in the amygdala.
    Huang CC; Gean PW
    J Neurosci Res; 1995 Apr; 40(6):747-54. PubMed ID: 7629888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):986-98. PubMed ID: 1684383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite regulation by the beta-adrenoceptor-cyclic AMP system of synaptic plasticity in the medial and lateral amygdala in vitro.
    Watanabe Y; Ikegaya Y; Saito H; Abe K
    Neuroscience; 1996 Apr; 71(4):1031-5. PubMed ID: 8684606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of voltage-dependent calcium currents by serotonin in acutely isolated rat amygdala neurons.
    Lin CH; Huang YC; Tsai JJ; Gean PW
    Synapse; 2001 Sep; 41(4):351-9. PubMed ID: 11494406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala.
    Lopez de Armentia M; Sah P
    J Neurophysiol; 2004 Sep; 92(3):1285-94. PubMed ID: 15128752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of synaptic transmission by adrenergic agonists via protein kinase A and protein kinase C in layer V pyramidal neurons of rat cerebral cortex.
    Kobayashi M
    Neuroscience; 2007 Jun; 146(4):1772-84. PubMed ID: 17478051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use-dependent modification of a slow NMDA receptor-mediated synaptic potential in rat amygdalar slices.
    Gean PW; Chang FC; Hung CR
    J Neurosci Res; 1993 Apr; 34(6):635-41. PubMed ID: 8100279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1992 Feb; 67(2):443-54. PubMed ID: 1349037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of corticosterone and the beta-agonist isoproterenol on glutamate receptor-mediated synaptic currents in the rat basolateral amygdala.
    Liebmann L; Karst H; Joƫls M
    Eur J Neurosci; 2009 Sep; 30(5):800-7. PubMed ID: 19712089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain.
    Ho YC; Cheng JK; Chiou LC
    J Physiol; 2015 Jul; 593(13):2955-73. PubMed ID: 25868084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histaminergic modulation of excitatory synaptic transmission in the rat basolateral amygdala.
    Jiang X; Chen A; Li H
    Neuroscience; 2005; 131(3):691-703. PubMed ID: 15730874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-1 beta inhibits synaptic transmission and induces membrane hyperpolarization in amygdala neurons.
    Yu B; Shinnick-Gallagher P
    J Pharmacol Exp Ther; 1994 Nov; 271(2):590-600. PubMed ID: 7525939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.