These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7875284)

  • 21. A new device for administration of nasal continuous positive airway pressure in the newborn: an experimental study.
    Moa G; Nilsson K; Zetterström H; Jonsson LO
    Crit Care Med; 1988 Dec; 16(12):1238-42. PubMed ID: 3056654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nasal continuous positive airway pressure devices do not maintain the set pressure dynamically when tested under simulated clinical conditions.
    Bacon JP; Farney RJ; Jensen RL; Walker JM; Cloward TV
    Chest; 2000 Nov; 118(5):1441-9. PubMed ID: 11083699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation and clinical application of a continuous P0.1 measurement using standard respiratory equipment.
    Kuhlen R; Mohnhaupt R; Slama K; Hausmann S; Pappert D; Rossaint R; Falke K
    Technol Health Care; 1996 Dec; 4(4):415-24. PubMed ID: 9042692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of imposed expiratory resistance in neonatal mechanical ventilation: a laboratory evaluation.
    DiBlasi RM; Salyer JW; Zignego JC; Redding GJ; Richardson CP
    Respir Care; 2008 Nov; 53(11):1450-60. PubMed ID: 18957147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of ventilator performance on airway pressure release ventilation: a model lung study.
    Yoshida T; Uchiyama A; Mashimo T; Fujino Y
    Anesth Analg; 2011 Sep; 113(3):529-33. PubMed ID: 21519042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variety of expiratory resistance between different continuous positive airway pressure devices for preterm infants.
    Wald M; Kribs A; Jeitler V; Lirsch D; Pollak A; Kirchner L
    Artif Organs; 2011 Jan; 35(1):22-8. PubMed ID: 20618229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superimposed inspiratory work of the Siemens Servo 300 ventilator during continuous positive airway pressure.
    Tan IK; Bhatt SB; Tam YH; Buckley TA; Oh TE
    Intensive Care Med; 1995 Dec; 21(12):1023-6. PubMed ID: 8750128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive respiratory support of juvenile rabbits by high-amplitude bubble continuous positive airway pressure.
    Diblasi RM; Zignego JC; Tang DM; Hildebrandt J; Smith CV; Hansen TN; Richardson CP
    Pediatr Res; 2010 Jun; 67(6):624-9. PubMed ID: 20308940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Added inspiratory work of breathing during CPAP ventilation: comparison of two demand-valve devices with a continuous flow-system.
    Viale JP; Annat G; Percival C; Bertrand O; Motin J
    Intensive Care Med; 1986; 12(5):374-7. PubMed ID: 3534040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of auto-titrating continuous positive airway pressure for treatment of adult obstructive sleep apnea. An American Academy of Sleep Medicine review.
    Berry RB; Parish JM; Hartse KM
    Sleep; 2002 Mar; 25(2):148-73. PubMed ID: 11902425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Work of breathing in spontaneous respiration with continuous positive airway pressure].
    Kellermann W; Summa Y; Rupprecht H; Unertl K; Jensen U
    Schweiz Med Wochenschr; 1986 Apr; 116(17):561-5. PubMed ID: 3520809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jet flow-regulated expiratory resistance to maintain constant CPAP during the entire respiratory phase.
    Nishimura M; Takezawa J; Imanaka H; Taenaka N; Yoshiya I
    Chest; 1989 Apr; 95(4):876-80. PubMed ID: 2647423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure characteristics of the Ambu CPAP system and the Servo ventilator 900C in CPAP mode.
    Zetterström H; Jonsson LO
    Acta Anaesthesiol Scand; 1987 Jan; 31(1):104-10. PubMed ID: 3548197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minimizing work of breathing with continuous positive airway pressure and intermittent mandatory ventilation: an improved continuous low-flow system.
    Hillman DR; Breakey JN; Lam YM; Noffsinger WJ; Finucane KE
    Crit Care Med; 1987 Jul; 15(7):665-70. PubMed ID: 3297491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of the circuit capacity in the administration of CPAP.
    Roeseler J; Bshouty ZH; Reynaert MS
    Intensive Care Med; 1984; 10(6):305-8. PubMed ID: 6392392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on continuous positive airway pressure breathing systems.
    Cox D; Niblett DJ
    Br J Anaesth; 1984 Aug; 56(8):905-11. PubMed ID: 6378229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breath-dependent pressure fluctuations in various constant- and variable-flow neonatal CPAP devices.
    Auer-Hackenberg L; Stroicz P; Hofstätter E; Brandner J; Haselmann C; Wald M
    Pediatr Pulmonol; 2022 Oct; 57(10):2411-2419. PubMed ID: 35774021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of the ventilator pressure- and flow-trigger variables.
    Sassoon CS; Gruer SE
    Intensive Care Med; 1995 Feb; 21(2):159-68. PubMed ID: 7775698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulated flying altitude and performance of continuous positive airway pressure devices.
    Sehlin M; Brändström H; Winsö O; Haney M; Wadell K; Ohberg F
    Aviat Space Environ Med; 2014 Nov; 85(11):1092-9. PubMed ID: 25329941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro comparison of performance including imposed work of breathing of CPAP systems used in low-resource settings.
    Heenan M; Rojas JD; Oden ZM; Richards-Kortum R
    PLoS One; 2020; 15(12):e0242590. PubMed ID: 33270660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.