BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7875331)

  • 1. Influence of the hydrophobicity of lipase isoenzymes from Candida rugosa on its hydrolytic activity in reverse micelles.
    Otero C; Rúa ML; Robledo L
    FEBS Lett; 1995 Feb; 360(2):202-6. PubMed ID: 7875331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and kinetic studies of lipases solubilized in reverse micelles.
    Walde P; Han D; Luisi PL
    Biochemistry; 1993 Apr; 32(15):4029-34. PubMed ID: 7682440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the interaction of porcine pancreatic lipase with AOT/isooctane reverse micelles on enzyme structure and function follow predictable patterns.
    Marangoni AG
    Enzyme Microb Technol; 1993 Nov; 15(11):944-9. PubMed ID: 7764254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the catalytic performance of lipase in reverse micelles.
    Xu J; Mao Q; Ying X; Hu Y
    Chin J Biotechnol; 1991; 7(4):301-7. PubMed ID: 1824243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes of different isolipases from Candida rugosa in liquid interfaces and after their contact with low-water-content media.
    Otero C; Del-Val I; Robledo L; Torres C; Arcos JA; Pérez-Gil J
    Ann N Y Acad Sci; 1996 Oct; 799():324-7. PubMed ID: 8958096
    [No Abstract]   [Full Text] [Related]  

  • 6. Enhanced conjugation of Candida rugosa lipase onto multiwalled carbon nanotubes using reverse micelles as attachment medium and application in nonaqueous biocatalysis.
    Raghavendra T; Vahora U; Shah AR; Madamwar D
    Biotechnol Prog; 2014; 30(4):828-36. PubMed ID: 24828252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions. I. Hydrolysis of 2-naphthyl acetate catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulphosuccinate (AOT)/buffer/heptane.
    Aguilar LF; Abuin E; Lissi E
    Arch Biochem Biophys; 2001 Apr; 388(2):231-6. PubMed ID: 11368159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes.
    Pernas MA; López C; Rúa ML; Hermoso J
    FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative kinetic study of lipases A and B from Candida rugosa in the hydrolysis of lipid p-nitrophenyl esters in mixed micelles with Triton X-100.
    Redondo O; Herrero A; Bello JF; Roig MG; Calvo MV; Plou FJ; Burguillo FJ
    Biochim Biophys Acta; 1995 Jan; 1243(1):15-24. PubMed ID: 7827103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choline acetate enhanced the catalytic performance of Candida rogusa lipase in AOT reverse micelles.
    Xue L; Zhao Y; Yu L; Sun Y; Yan K; Li Y; Huang X; Qu Y
    Colloids Surf B Biointerfaces; 2013 May; 105():81-6. PubMed ID: 23352950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.
    Zhang R; Zhao L; Liu R
    J Photochem Photobiol B; 2016 Oct; 163():40-6. PubMed ID: 27529468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal stability enhancements of Candida rugosa lipase in ionic liquids.
    Fráter T; Ulbert O; Bélafi-Bakó K; Gubicza L
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):293-6. PubMed ID: 15296180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dependence of the lipolytic activity of Rhizopus arrhizus lipase on surfactant concentration in Aerosol-OT/isooctane reverse micelles and its relationship to enzyme structure.
    Brown ED; Yada RY; Marangoni AG
    Biochim Biophys Acta; 1993 Jan; 1161(1):66-72. PubMed ID: 7678504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes.
    Brocca S; Secundo F; Ossola M; Alberghina L; Carrea G; Lotti M
    Protein Sci; 2003 Oct; 12(10):2312-9. PubMed ID: 14500889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of two distinct lipases from Candida cylindracea.
    Rúa L; Díaz-Mauriño T; Fernández VM; Otero C; Ballesteros A
    Biochim Biophys Acta; 1993 Feb; 1156(2):181-9. PubMed ID: 8427877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement in extraction and catalytic activity of Mucor javanicus lipase by modification of AOT reverse micelle.
    Talukder MR; Susanto D; Feng G; Wu J; Choi WJ; Chow Y
    Biotechnol J; 2007 Nov; 2(11):1369-74. PubMed ID: 17639532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the reaction medium on enzyme activity in bio-organic synthesis: behaviour of lipase from Candida rugosa in the presence of polar additives.
    Triantafyllou AO; Adlercreutz P; Mattiasson B
    Biotechnol Appl Biochem; 1993 Apr; 17(2):167-79. PubMed ID: 8484905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions.
    Trubiano G; Borio D; Ferreira ML
    Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the pretreatment of lipase with organic solvents on its conformation and activity in reverse micelles.
    Moniruzzaman M; Talukder MR; Hayashi Y; Kawanishi T
    Appl Biochem Biotechnol; 2007 Sep; 142(3):253-62. PubMed ID: 18025586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents.
    Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M
    Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.