BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7875331)

  • 21. Isolation of carboxylester lipase (CEL) isoenzymes from Candida rugosa and identification of the corresponding genes.
    Diczfalusy MA; Hellman U; Alexson SE
    Arch Biochem Biophys; 1997 Dec; 348(1):1-8. PubMed ID: 9390168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media.
    López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML
    Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Candida rugosa lipase Lip1-polyethyleneglycol interaction and the relation with its partition in aqueous two-phase systems.
    Bassani G; Fuciños P; Picó G; Farruggia B
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):532-7. PubMed ID: 19846284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants.
    Yamada Y; Kuboi R; Komasawa I
    Biotechnol Prog; 1993; 9(5):468-72. PubMed ID: 7692888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of p-nitrophenyl acetate hydrolysis catalyzed by Mucor javanicus lipase in AOT reverse micellar solutions formulated in different organic solvents.
    Abuin E; Lissi E; Biasutti MA; Duarte R
    Protein J; 2007 Oct; 26(7):475-9. PubMed ID: 17522967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fine separation and characterization of Candida rugosa lipase isoenzymes.
    Xin JY; Xiao-Xue Hu YX; Cui JR; Li SB; Xia CG; Zhu LM
    J Basic Microbiol; 2002; 42(5):355-63. PubMed ID: 12362407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of structure and hydrolysis activity of Candida rugosa Lip7 in presence of sub-/super-critical CO₂.
    Liu Y; Chen D; Xu L; Yan Y
    Enzyme Microb Technol; 2012 Dec; 51(6-7):354-8. PubMed ID: 23040391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unsaturation at the surfactant head: influence on the activity of lipase and horseradish peroxidase in reverse micelles.
    Debnath S; Das D; Das PK
    Biochem Biophys Res Commun; 2007 Apr; 356(1):163-8. PubMed ID: 17349615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipase immobilization on differently functionalized vinyl-based amphiphilic polymers: influence of phase segregation on the enzyme hydrolytic activity.
    Bellusci M; Francolini I; Martinelli A; D'Ilario L; Piozzi A
    Biomacromolecules; 2012 Mar; 13(3):805-13. PubMed ID: 22295868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Higher order structure of proteins solubilized in AOT reverse micelles.
    Naoe K; Noda K; Kawagoe M; Imai M
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):179-85. PubMed ID: 15542322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding Candida rugosa lipases: an overview.
    Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR
    Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reductive alkylation of lipase: experimental and molecular modeling approaches.
    Rahman RN; Tejo BA; Basri M; Rahman MB; Khan F; Zain SM; Siahaan TJ; Salleh AB
    Appl Biochem Biotechnol; 2004; 118(1-3):11-20. PubMed ID: 15304735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase.
    Hong SC; Park KM; Son YH; Jung HS; Kim K; Choi SJ; Chang PS
    Food Chem; 2015 Jul; 179():263-9. PubMed ID: 25722164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Higher order structure of Mucor miehei lipase and micelle size in cetyltrimethylammonium bromide reverse micellar system.
    Naoe K; Takeuchi C; Kawagoe M; Nagayama K; Imai M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):277-84. PubMed ID: 17169622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermostability of Cromobacterium viscosum lipase in AOT/isooctane reverse micelle.
    Talukder MM; Zaman MM; Hayashi Y; Wu JC; Kawanishi T
    Appl Biochem Biotechnol; 2007 Apr; 141(1):77-84. PubMed ID: 17625267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].
    Bogdanova LR; Bakirova DR; Valiullina YA; Idiyatullin BZ; Faizullin DA; Zueva OS; Zuev YF
    Biofizika; 2016; 61(2):247-54. PubMed ID: 27192825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen.
    Liu YY; Xu JH; Wu HY; Shen D
    J Biotechnol; 2004 May; 110(2):209-17. PubMed ID: 15121339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificity and kinetics of Candida rugosa lipase in organic media.
    Janssen AE; Vaidya AM; Halling PJ
    Enzyme Microb Technol; 1996 Apr; 18(5):340-6. PubMed ID: 8882001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of metal ions on the hydrolytic and transesterification activities of Candida rugosa lipase.
    Katiyar M; Ali A
    J Oleo Sci; 2013; 62(11):919-24. PubMed ID: 24200940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions.
    Abuin E; Lissi E; Solar C
    J Colloid Interface Sci; 2005 Mar; 283(1):87-93. PubMed ID: 15694427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.