These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7875545)

  • 1. Different influence of superoxide anions and hydrogen peroxide on endothelial function of isolated cat cerebral and pulmonary arteries.
    Fraile ML; Conde MV; Sanz L; Moreno MJ; Marco EJ; López de Pablo AL
    Gen Pharmacol; 1994 Oct; 25(6):1197-205. PubMed ID: 7875545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries.
    Drouin A; Thorin-Trescases N; Hamel E; Falck JR; Thorin E
    Cardiovasc Res; 2007 Jan; 73(1):73-81. PubMed ID: 17113574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of H2O2 in superoxide-dismutase-induced enhancement of endothelium-dependent relaxation in rabbit mesenteric resistance artery.
    Itoh T; Kajikuri J; Hattori T; Kusama N; Yamamoto T
    Br J Pharmacol; 2003 May; 139(2):444-56. PubMed ID: 12770950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved.
    Rodríguez-Martínez MA; García-Cohen EC; Baena AB; González R; Salaíces M; Marín J
    Br J Pharmacol; 1998 Nov; 125(6):1329-35. PubMed ID: 9863664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different influence of endothelium in the mechanical responses of human and cat isolated cerebral arteries to several agents.
    Conde MV; Marco EJ; Fraile ML; Benito JM; Moreno MJ; Sanz ML; López de Pablo AL
    J Pharm Pharmacol; 1991 Apr; 43(4):255-61. PubMed ID: 1676738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia.
    Fresquet F; Pourageaud F; Leblais V; Brandes RP; Savineau JP; Marthan R; Muller B
    Br J Pharmacol; 2006 Jul; 148(5):714-23. PubMed ID: 16715116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of superoxide anion on basal and stimulated nitric oxide activity in neonatal piglet pulmonary vessels.
    Villamor E; Kessels CG; Fischer MA; Bast A; de Mey JG; Blanco CE
    Pediatr Res; 2003 Sep; 54(3):372-81. PubMed ID: 12788981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in endothelium-dependent vasodilation and the influence of superoxide anions in perinatal rabbit pulmonary arteries.
    Morecroft I; MacLean MR
    Br J Pharmacol; 1998 Dec; 125(7):1585-93. PubMed ID: 9884088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low micromolar concentrations of copper augment the impairment of endothelium-dependent relaxation of aortae from diabetic rabbits.
    Shukla N; Thompson CS; Angelini GD; Mikhailidis DP; Jeremy JY
    Metabolism; 2004 Oct; 53(10):1315-21. PubMed ID: 15375788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2.
    Rabelo LA; Cortes SF; Alvarez-Leite JI; Lemos VS
    Br J Pharmacol; 2003 Apr; 138(7):1215-20. PubMed ID: 12711621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries.
    Johnson LR; Rush JW; Turk JR; Price EM; Laughlin MH
    J Appl Physiol (1985); 2001 Mar; 90(3):1102-10. PubMed ID: 11181626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals.
    Pieper GM; Langenstroer P; Siebeneich W
    Cardiovasc Res; 1997 Apr; 34(1):145-56. PubMed ID: 9217884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta.
    Mian KB; Martin W
    Br J Pharmacol; 1995 Jul; 115(6):993-1000. PubMed ID: 7582532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide and endothelium-dependent constriction to flow in porcine small pulmonary arteries.
    Liu Q; Wiener CM; Flavahan NA
    Br J Pharmacol; 1998 May; 124(2):331-6. PubMed ID: 9641550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-radical scavengers, thiol-containing reagents and endothelium-dependent relaxation in isolated rat and human resistance arteries.
    Sunman W; Hughes AD; Sever PS
    Clin Sci (Lond); 1993 Mar; 84(3):287-95. PubMed ID: 8384951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity.
    Mügge A; Elwell JH; Peterson TE; Harrison DG
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C219-25. PubMed ID: 1847583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic mechanism in the large cat cerebral artery.
    Lee TJ
    Circ Res; 1982 Jun; 50(6):870-9. PubMed ID: 7083486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery.
    Ozkan MH; Uma S
    Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species.
    Karasu C
    Eur J Pharmacol; 2000 Mar; 392(3):163-73. PubMed ID: 10762670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.