These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7875559)

  • 41. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae.
    Boucherie H
    J Bacteriol; 1985 Jan; 161(1):385-92. PubMed ID: 3881394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induction of a heat-shock-type response in Saccharomyces cerevisiae following glucose limitation.
    Bataillé N; Régnacq M; Boucherie H
    Yeast; 1991; 7(4):367-78. PubMed ID: 1872028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae.
    Matsumoto R; Akama K; Rakwal R; Iwahashi H
    BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-dimensional gel protein database of Saccharomyces cerevisiae.
    Boucherie H; Sagliocco F; Joubert R; Maillet I; Labarre J; Perrot M
    Electrophoresis; 1996 Nov; 17(11):1683-99. PubMed ID: 8982601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldeyhyde-3-phosphate dehydrogenase promoter of Pichia pastoris.
    Vellanki RN; Komaravelli N; Tatineni R; Mangamoori LN
    Biotechnol Lett; 2007 Feb; 29(2):313-8. PubMed ID: 17136304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells.
    Yan Q; Briehl M; Crowley CL; Payne CM; Bernstein H; Bernstein C
    Biochem Biophys Res Commun; 1999 Feb; 255(1):133-6. PubMed ID: 10082668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Enhancement of the production of SAM by overexpression of SAM synthetase in Pichia pastoris].
    Yu ZL; Wu XJ; Li DY; Yang S; Zhou Z; Cai J; Yuan ZY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Feb; 35(2):127-32. PubMed ID: 12545218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TDH2 is linked to MET3 on chromosome X of Saccharomyces cerevisiae.
    Mountain HA; Korch C
    Yeast; 1991 Nov; 7(8):873-80. PubMed ID: 1789010
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deletion of the GAPDH gene contributes to genome stability in Saccharomyces cerevisiae.
    Hanasaki M; Yaku K; Yamauchi M; Nakagawa T; Masumoto H
    Sci Rep; 2020 Dec; 10(1):21146. PubMed ID: 33273685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Comparative study of glyceraldehyde-3-phosphate dehydrogenases isolated from rabbit skeletal muscles and baker's yeast using cationic fluorescent probes].
    Klichko VI; Ivanov MV; Nagradova NK
    Biokhimiia; 1986 Sep; 51(9):1465-75. PubMed ID: 3533163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression levels and patterns of glycolytic yeast genes during wine fermentation.
    Puig S; Pérez-Ortín JE
    Syst Appl Microbiol; 2000 Jun; 23(2):300-3. PubMed ID: 10930084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The glyceraldehyde-3-phosphate dehydrogenase binds in vitro to the SH3 domain of Saccharomyces cerevisiae Cdc25p.
    Buu A; Garreau H; Jacquet M
    C R Acad Sci III; 1995 Jun; 318(6):665-9. PubMed ID: 7671010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N-terminal methionine removal and methionine metabolism in Saccharomyces cerevisiae.
    Dummitt B; Micka WS; Chang YH
    J Cell Biochem; 2003 Aug; 89(5):964-74. PubMed ID: 12874831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition.
    Shnyreva MG; Petrova EV; Egorov SN; Hinnen A
    Microbiol Res; 1996 Aug; 151(3):291-300. PubMed ID: 8817921
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in the protein synthesis pattern during a nutritional shift-down transition in Saccharomyces cerevisiae.
    Rodriguez F; Popolo L; Vai M; Lacanà E; Alberghina L
    Exp Cell Res; 1990 Apr; 187(2):315-9. PubMed ID: 2180735
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The combined effect of inhibitors with regard to their coenzyme on yeast glyceraldehyde-3-phosphate dehydrogenase].
    Asriiants RA; Ivanov MV
    Biokhimiia; 1973; 38(2):270-6. PubMed ID: 4360970
    [No Abstract]   [Full Text] [Related]  

  • 58. Protein synthesis during germination of heterothallic yeast ascospores.
    Xu G; West TP
    Experientia; 1992 Aug; 48(8):786-8. PubMed ID: 1516688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fermentative capacity after cold storage of baker's yeast is dependent on the initial physiological state but not correlated to the levels of glycolytic enzymes.
    Nilsson A; Norbeck J; Oelz R; Blomberg A; Gustafsson L
    Int J Food Microbiol; 2001 Dec; 71(2-3):111-24. PubMed ID: 11789928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Glycolytic Enzyme Polypeptides on the Two-Dimensional Protein Map of Saccharomyces cerevisiae and Application to the Study of Some Wine Yeasts.
    Brousse M; Bataillé N; Boucherie H
    Appl Environ Microbiol; 1985 Oct; 50(4):951-7. PubMed ID: 16346922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.