BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 7875715)

  • 1. Inhibition of two HMP shunt pathway enzymes by fatty acids and their CoA esters in developing human brain: role of fatty acid binding protein.
    Mukhopadhyay D; Mukherjea M
    Indian J Biochem Biophys; 1994 Dec; 31(6):464-8. PubMed ID: 7875715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fatty acid binding protein in the modulation of inhibitory effect of fatty acids on fatty acid synthase and ATP-citrate lyase in developing human brain.
    Mukhopadhyay D; Mukherjea M
    Indian J Biochem Biophys; 1998 Oct; 35(5):296-302. PubMed ID: 10410463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.
    Faergeman NJ; Knudsen J
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):1-12. PubMed ID: 9173866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human fetal liver fatty acid binding proteins. Role on glucose-6-phosphate dehydrogenase activity.
    Das T; Sa G; Mukherjea M
    Biochim Biophys Acta; 1989 Apr; 1002(2):164-72. PubMed ID: 2495021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of fatty acid-binding proteins from human fetal lung.
    Sa G; Das T; Mukherjea M
    Exp Lung Res; 1989 Jul; 15(4):619-34. PubMed ID: 2767006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of fatty acid-binding protein from human placenta.
    Das T; Sa G; Mukherjea M
    Lipids; 1988 Jun; 23(6):528-33. PubMed ID: 3172984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fatty acid binding proteins on developing human placental malate dehydrogenase activity.
    Bandyopadhyay AK; Das T; Sa G; Mukherjea M
    Indian J Exp Biol; 1994 Nov; 32(11):800-3. PubMed ID: 7896310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between fatty acid synthesis, transport and total lipid content during human fetal lung development.
    Sa G; Das T; Mukherjea M
    Indian J Biochem Biophys; 1990 Feb; 27(1):43-7. PubMed ID: 2341165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of intermediary metabolism and its control in a fat-synthesizing yeast (Candida 107) growing on glucose or alkanes.
    Whitworth DA; Ratledge C
    J Gen Microbiol; 1975 Jun; 88(2):275-88. PubMed ID: 239092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acyl-CoAs as feedback regulators of hexose monophosphate shunt in rat adipocytes.
    Ros M; Cubero A; Lobato MF; García-Ruiz JP; Moreno FJ
    Mol Cell Biochem; 1984 Sep; 63(2):119-23. PubMed ID: 6436683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible physiological role of myocardial fatty acid binding protein in phospholipid biosynthesis.
    Samanta A; Prasad MR; Engelman RM; Das DK
    J Lipid Mediat; 1989; 1(4):243-55. PubMed ID: 2519896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Function of the pentosephosphate pathway in the rat brain during one-time administration of various doses of ethanol].
    Lelevich VV
    Vopr Med Khim; 1991; 37(1):21-3. PubMed ID: 1858333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in sea urchin eggs by palymitoyl-coenzyme A and reversal by polyamines.
    Mita M; Yasumasu I
    Arch Biochem Biophys; 1980 Apr; 201(1):322-9. PubMed ID: 7190369
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition effects of some antidepressant drugs on pentose phosphate pathway enzymes.
    Özaslan MS; Balcı N; Demir Y; Gürbüz M; Küfrevioğlu Öİ
    Environ Toxicol Pharmacol; 2019 Nov; 72():103244. PubMed ID: 31557707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in enzymatic activities involved in glucose metabolism by acyl-CoAs in Trypanosoma cruzi.
    García de Lema M; Lucchesi G; Racagni G; Machado-Domenech EE
    Can J Microbiol; 2001 Jan; 47(1):49-54. PubMed ID: 15049449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the effects of some phenolic compounds on the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from human erythrocytes.
    Adem S; Comakli V; Kuzu M; Demirdag R
    J Biochem Mol Toxicol; 2014 Nov; 28(11):510-4. PubMed ID: 25130191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biological role of fatty acid binding proteins].
    Yang J; Tang CS
    Sheng Li Ke Xue Jin Zhan; 1993 Jan; 24(1):38-42. PubMed ID: 8332867
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of long-term exposure to Cu2+ and Cd2+ on the pentose phosphate pathway dehydrogenase activities in the ovary of adult Bufo arenarum: possible role as biomarker for Cu2+ toxicity.
    Carattino MD; Peralta S; Pérez-Coll C; Naab F; Burlón A; Kreiner AJ; Preller AF; de Schroeder TM
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):311-8. PubMed ID: 15041254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.).
    Hutchings D; Rawsthorne S; Emes MJ
    J Exp Bot; 2005 Feb; 56(412):577-85. PubMed ID: 15611146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.