BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7876221)

  • 1. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin.
    Ames JB; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.
    Hamasaki-Katagiri N; Molchanova T; Takeda K; Ames JB
    J Biol Chem; 2004 Mar; 279(13):12744-54. PubMed ID: 14722091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae.
    Ames JB; Hendricks KB; Strahl T; Huttner IG; Hamasaki N; Thorner J
    Biochemistry; 2000 Oct; 39(40):12149-61. PubMed ID: 11015193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli.
    Ladant D
    J Biol Chem; 1995 Feb; 270(7):3179-85. PubMed ID: 7852401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.
    Li C; Lim S; Braunewell KH; Ames JB
    PLoS One; 2016; 11(11):e0165921. PubMed ID: 27820860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase.
    Senin II; Zargarov AA; Alekseev AM; Gorodovikova EN; Lipkin VM; Philippov PP
    FEBS Lett; 1995 Nov; 376(1-2):87-90. PubMed ID: 8521974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recoverin alters its surface properties depending on both calcium-binding and N-terminal myristoylation.
    Kataoka M; Mihara K; Tokunaga F
    J Biochem; 1993 Oct; 114(4):535-40. PubMed ID: 8276764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.