These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7876898)

  • 1. Electrostatic complementarity between proteins and ligands. 1. Charge disposition, dielectric and interface effects.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):513-25. PubMed ID: 7876898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic complementarity between proteins and ligands. 2. Ligand moieties.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):527-44. PubMed ID: 7876899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic complementarity between proteins and ligands. 3. Structural basis.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):545-64. PubMed ID: 7876900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand atom partial charges assignment for complementary electrostatic potentials.
    Chan SL; Chau PL; Goodman JM
    J Comput Aided Mol Des; 1992 Oct; 6(5):461-74. PubMed ID: 1335484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic complementarity at protein/protein interfaces.
    McCoy AJ; Chandana Epa V; Colman PM
    J Mol Biol; 1997 May; 268(2):570-84. PubMed ID: 9159491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.
    Bauer MR; Mackey MD
    J Med Chem; 2019 Mar; 62(6):3036-3050. PubMed ID: 30807144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IVGA3D: De novo ligand design using a variable sized tree representation.
    Bandyopadhyay S; Sengupta S
    Protein Pept Lett; 2010 Dec; 17(12):1495-516. PubMed ID: 20518735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CP
    Basu S
    J Mol Model; 2017 Dec; 24(1):8. PubMed ID: 29218430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different continium dielectric models in a molecular dynamics and energy minimization study of the antigenic loop of foot-and-mouth disease virus.
    Vega MC; Alemán C; Alhambra C; Perez JJ
    J Biomol Struct Dyn; 1993 Oct; 11(2):429-41. PubMed ID: 8286066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic theory of the dielectric properties of proteins.
    Simonson T; Perahia D; Brünger AT
    Biophys J; 1991 Mar; 59(3):670-90. PubMed ID: 1646659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of the Interfacial Electrostatic Complementarity: A Method for Analysis of Protein-Protein Interaction Based on
    Ozono H; Ishikawa T
    J Chem Theory Comput; 2021 Sep; 17(9):5600-5610. PubMed ID: 34432447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic complementarity at the interface drives transient protein-protein interactions.
    Grassmann G; Di Rienzo L; Gosti G; Leonetti M; Ruocco G; Miotto M; Milanetti E
    Sci Rep; 2023 Jun; 13(1):10207. PubMed ID: 37353566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular docking using surface complementarity.
    Sobolev V; Wade RC; Vriend G; Edelman M
    Proteins; 1996 May; 25(1):120-9. PubMed ID: 8727324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Complementarity in Structure-Based Drug Design.
    Cons BD; Twigg DG; Kumar R; Chessari G
    J Med Chem; 2022 Jun; 65(11):7476-7488. PubMed ID: 35512344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling charge complementarity and selectivity for binding at the protein surface.
    Sulea T; Purisima EO
    Biophys J; 2003 May; 84(5):2883-96. PubMed ID: 12719221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The atom assignment problem in automated de novo drug design. 4. Tests for site-directed fragment placement based on molecular complementarity.
    Barakat MT; Dean PM
    J Comput Aided Mol Des; 1995 Oct; 9(5):448-56. PubMed ID: 8594162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design.
    Zauhar RJ; Moyna G; Tian L; Li Z; Welsh WJ
    J Med Chem; 2003 Dec; 46(26):5674-90. PubMed ID: 14667221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative binding orientations of adenosine A1 receptor ligands--a test case for Distributed Multipole Analysis in medicinal chemistry.
    van der Wenden EM; Price SL; Apaya RP; IJzerman AP; Soudijn W
    J Comput Aided Mol Des; 1995 Feb; 9(1):44-54. PubMed ID: 7751869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.