These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7876900)

  • 1. Electrostatic complementarity between proteins and ligands. 3. Structural basis.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):545-64. PubMed ID: 7876900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic complementarity between proteins and ligands. 2. Ligand moieties.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):527-44. PubMed ID: 7876899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic complementarity between proteins and ligands. 1. Charge disposition, dielectric and interface effects.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):513-25. PubMed ID: 7876898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand atom partial charges assignment for complementary electrostatic potentials.
    Chan SL; Chau PL; Goodman JM
    J Comput Aided Mol Des; 1992 Oct; 6(5):461-74. PubMed ID: 1335484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer design of bioactive molecules: a method for receptor-based de novo ligand design.
    Moon JB; Howe WJ
    Proteins; 1991; 11(4):314-28. PubMed ID: 1758885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.
    Bauer MR; Mackey MD
    J Med Chem; 2019 Mar; 62(6):3036-3050. PubMed ID: 30807144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IVGA3D: De novo ligand design using a variable sized tree representation.
    Bandyopadhyay S; Sengupta S
    Protein Pept Lett; 2010 Dec; 17(12):1495-516. PubMed ID: 20518735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic recognition and immunochemical assay of ligand binding to collagen.
    Vaidyanathan J; Chinnaswamy K; Vaidyanathan TK
    J Adhes Dent; 2003; 5(1):7-17. PubMed ID: 12729079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of atomic level patterns in protein--small ligand interactions.
    Chen K; Kurgan L
    PLoS One; 2009; 4(2):e4473. PubMed ID: 19221587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast and efficient method to generate biologically relevant conformations.
    Klebe G; Mietzner T
    J Comput Aided Mol Des; 1994 Oct; 8(5):583-606. PubMed ID: 7876902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease.
    Purohit R; Sethumadhavan R
    Interdiscip Sci; 2009 Dec; 1(4):320-8. PubMed ID: 20640812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design.
    Zauhar RJ; Moyna G; Tian L; Li Z; Welsh WJ
    J Med Chem; 2003 Dec; 46(26):5674-90. PubMed ID: 14667221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic complementarity at protein/protein interfaces.
    McCoy AJ; Chandana Epa V; Colman PM
    J Mol Biol; 1997 May; 268(2):570-84. PubMed ID: 9159491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking by least-squares fitting of molecular surface patterns.
    Bacon DJ; Moult J
    J Mol Biol; 1992 Jun; 225(3):849-58. PubMed ID: 1602486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of affinity peptide ligand by flexible docking simulation.
    Liu FF; Wang T; Dong XY; Sun Y
    J Chromatogr A; 2007 Mar; 1146(1):41-50. PubMed ID: 17298835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of sigma 1 receptor ligands: a model of binding conformational and electrostatic considerations.
    Gund TM; Floyd J; Jung D
    J Mol Graph Model; 2004 Jan; 22(3):221-30. PubMed ID: 14629980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided molecular modeling of the binding site architecture for eight monoclonal antibodies that bind a high potency guanidinium sweetener.
    Anchin JM; Mandal C; Culberson C; Subramaniam S; Linthicum DS
    J Mol Graph; 1994 Dec; 12(4):257-66, 289-90. PubMed ID: 7696216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.