These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase. Anderson RA; Kennedy FS; Vallee BL Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521 [TBL] [Abstract][Full Text] [Related]
24. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
25. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein. Udom AO; Brady FO Biochem J; 1980 May; 187(2):329-35. PubMed ID: 6772158 [TBL] [Abstract][Full Text] [Related]
26. Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase. Cioni P; Piras L; Strambini GB Eur J Biochem; 1989 Nov; 185(3):573-9. PubMed ID: 2686989 [TBL] [Abstract][Full Text] [Related]
27. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography. Bock JL; Kowalsky A Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775 [TBL] [Abstract][Full Text] [Related]
28. Escherichia coli Co(II) alkaline phosphatase. Absorption, circular dichroism, and magnetic circular dichroism of the d-d electronic transitions. Taylor JS; Lau CY; Applebury ML; Coleman JE J Biol Chem; 1973 Sep; 248(17):6216-20. PubMed ID: 4580054 [No Abstract] [Full Text] [Related]
29. Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase: the influence of zinc on protein structure and a conformational change induced by phosphate binding. Hull WE; Sykes BD Biochemistry; 1976 Apr; 15(7):1535-46. PubMed ID: 4091 [TBL] [Abstract][Full Text] [Related]
32. Alkaline phosphatase, solution structure, and mechanism. Coleman JE; Gettins P Adv Enzymol Relat Areas Mol Biol; 1983; 55():381-452. PubMed ID: 6312783 [No Abstract] [Full Text] [Related]
33. Reconstitution of Escherichia coli photolyase with flavins and flavin analogues. Payne G; Wills M; Walsh C; Sancar A Biochemistry; 1990 Jun; 29(24):5706-11. PubMed ID: 2200512 [TBL] [Abstract][Full Text] [Related]
34. 4-Fluorotryptophan alkaline phosphatase from E. coli: preparation, properties, and 19F NMR spectrum. Browne DT; Otvos JD Biochem Biophys Res Commun; 1976 Feb; 68(3):907-13. PubMed ID: 769791 [No Abstract] [Full Text] [Related]
35. Electron paramagnetic resonance studies on the copper(II) substituted alkaline phosphatase from Escherichia coli. Csopak H; Falk KE Biochim Biophys Acta; 1974 Jul; 359(1):22-32. PubMed ID: 4367983 [No Abstract] [Full Text] [Related]
36. Preparation and reconstitution with divalent metal ions of class I and class II Clostridium histolyticum apocollagenases. Angleton EL; Van Wart HE Biochemistry; 1988 Sep; 27(19):7406-12. PubMed ID: 2849991 [TBL] [Abstract][Full Text] [Related]
37. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
38. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase. Anderson RA; Vallee BL Proc Natl Acad Sci U S A; 1975 Jan; 72(1):394-7. PubMed ID: 164026 [TBL] [Abstract][Full Text] [Related]
39. Factors affecting the zinc content of E. coli alkaline phosphatase. Csopak H; Szajn H Arch Biochem Biophys; 1973 Aug; 157(2):374-9. PubMed ID: 4199855 [No Abstract] [Full Text] [Related]
40. Monomeric alkaline phosphatase of Vibrio cholerae. Roy NK; Ghosh RK; Das J J Bacteriol; 1982 Jun; 150(3):1033-9. PubMed ID: 6804434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]