These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7877178)

  • 21. Translation start of IS10 transposase protein.
    Sen J; Septak M; Jain C; Kleckner N
    Nucleic Acids Res; 1988 May; 16(10):4730. PubMed ID: 2837742
    [No Abstract]   [Full Text] [Related]  

  • 22. Vectors for constructing kan gene fusions: direct selection of mutations affecting IS10 gene expression.
    Sussman JK; Masada-Pepe C; Simons EL; Simons RW
    Gene; 1990 May; 90(1):135-40. PubMed ID: 2165970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site.
    Bolland S; Kleckner N
    Cell; 1996 Jan; 84(2):223-33. PubMed ID: 8565068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation.
    Verrier SB; Jean-Jean O
    RNA; 2000 Apr; 6(4):584-97. PubMed ID: 10786849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tn10 protects itself at two levels from fortuitous activation by external promoters.
    Davis MA; Simons RW; Kleckner N
    Cell; 1985 Nov; 43(1):379-87. PubMed ID: 2416461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of IS10 transposase separation of function mutants: identification of amino acid residues in transposase that are important for active site function and the stability of transposition intermediates.
    Kennedy AK; Haniford DB
    J Mol Biol; 1996 Mar; 256(3):533-47. PubMed ID: 8604136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Negative and positive regulation of Tn10/IS10-promoted recombination by IHF: two distinguishable processes inhibit transposition off of multicopy plasmid replicons and activate chromosomal events that favor evolution of new transposons.
    Signon L; Kleckner N
    Genes Dev; 1995 May; 9(9):1123-36. PubMed ID: 7744253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene.
    Thisted T; Gerdes K
    J Mol Biol; 1992 Jan; 223(1):41-54. PubMed ID: 1370544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations in the inverted repeats of Tn3 affect binding of transposase and transposition immunity.
    Nissley DV; Lindh F; Fennewald MA
    J Mol Biol; 1991 Mar; 218(2):335-47. PubMed ID: 1849179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding.
    Franch T; Gultyaev AP; Gerdes K
    J Mol Biol; 1997 Oct; 273(1):38-51. PubMed ID: 9367744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of two hypertransposing Tn5 mutants.
    Wiegand TW; Reznikoff WS
    J Bacteriol; 1992 Feb; 174(4):1229-39. PubMed ID: 1310499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of translation by mRNA secondary structure: the importance of the kinetics of structure formation.
    Ma CK; Kolesnikow T; Rayner JC; Simons EL; Yim H; Simons RW
    Mol Microbiol; 1994 Dec; 14(5):1033-47. PubMed ID: 7536290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus.
    Tang TH; Polacek N; Zywicki M; Huber H; Brugger K; Garrett R; Bachellerie JP; Hüttenhofer A
    Mol Microbiol; 2005 Jan; 55(2):469-81. PubMed ID: 15659164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons.
    Scofield SR; Harrison K; Nurrish SJ; Jones JD
    Plant Cell; 1992 May; 4(5):573-82. PubMed ID: 1323365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitation of insertion sequence IS10 transposase gene expression by a method generally applicable to any rarely expressed gene.
    Raleigh EA; Kleckner N
    Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1787-91. PubMed ID: 3006072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IS10 transposition is regulated by DNA adenine methylation.
    Roberts D; Hoopes BC; McClure WR; Kleckner N
    Cell; 1985 Nov; 43(1):117-30. PubMed ID: 3000598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural domains of IS10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an interdomain linker.
    Kwon D; Chalmers RM; Kleckner N
    Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8234-8. PubMed ID: 7667274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition.
    Ellis MJ; Trussler RS; Haniford DB
    Nucleic Acids Res; 2015 Jul; 43(13):6511-27. PubMed ID: 26044710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antisense RNAs in bacteria and their genetic elements.
    Wagner EG; Altuvia S; Romby P
    Adv Genet; 2002; 46():361-98. PubMed ID: 11931231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New IS10 transposition vectors based on a gram-positive replication origin.
    Mahillon J; Kleckner N
    Gene; 1992 Jul; 116(1):69-74. PubMed ID: 1321071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.