These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7877496)

  • 1. Amino acid replacements and wavelength absorption of visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1995 Jan; 12(1):53-61. PubMed ID: 7877496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of ultraviolet pigments of vertebrates.
    Yokoyama S; Radlwimmer FB; Kawamura S
    FEBS Lett; 1998 Feb; 423(2):155-8. PubMed ID: 9512349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1994 Jan; 11(1):32-9. PubMed ID: 8121284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular diversity of visual pigments in the butterfly Papilio glaucus.
    Briscoe AD
    Naturwissenschaften; 1998 Jan; 85(1):33-5. PubMed ID: 9484709
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular genetic basis of adaptive selection: examples from color vision in vertebrates.
    Yokoyama S
    Annu Rev Genet; 1997; 31():315-36. PubMed ID: 9442898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal.
    Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
    Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).
    Temple SE; Ramsden SD; Haimberger TJ; Veldhoen KM; Veldhoen NJ; Carter NL; Roth WM; Hawryshyn CW
    J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic analysis and experimental approaches to study color vision in vertebrates.
    Yokoyama S
    Methods Enzymol; 2000; 315():312-25. PubMed ID: 10736710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae).
    Yokoyama S; Zhang H; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6279-84. PubMed ID: 10339578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus).
    Jokela-Määttä M; Vartio A; Paulin L; Donner K
    J Exp Biol; 2009 Nov; 212(Pt 21):3415-21. PubMed ID: 19837882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the Cl(-)-binding site in the human red and green color vision pigments.
    Wang Z; Asenjo AB; Oprian DD
    Biochemistry; 1993 Mar; 32(9):2125-30. PubMed ID: 8443153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.