These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 787756)
1. Transcription of Escherichia coli ribosomal DNA in Proteus mirabilis. Morgan EA; Kaplan S Mol Gen Genet; 1976 Aug; 147(2):179-88. PubMed ID: 787756 [TBL] [Abstract][Full Text] [Related]
2. Structure, function, and regulation of Escherichia coli rRNA in Proteus mirabilis. Morgan EA; Kaplan S J Bacteriol; 1978 May; 134(2):606-11. PubMed ID: 350828 [TBL] [Abstract][Full Text] [Related]
3. In vitro synthesis of Escherichia coli ribosomal RNA. Birnbaum LS; Kaplan S J Mol Biol; 1973 Mar; 75(1):73-81. PubMed ID: 4576591 [No Abstract] [Full Text] [Related]
4. Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh. Rinke-Appel J; Osswald M; von Knoblauch K; Mueller F; Brimacombe R; Sergiev P; Avdeeva O; Bogdanov A; Dontsova O RNA; 2002 May; 8(5):612-25. PubMed ID: 12022228 [TBL] [Abstract][Full Text] [Related]
5. An analysis of the ribosomal ribonucleic acids of Escherichia coli by hybridization techniques. Avery RJ; Midgley JE; Pigott GH Biochem J; 1969 Nov; 115(3):395-403. PubMed ID: 4901070 [TBL] [Abstract][Full Text] [Related]
6. The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. Koronakis V; Cross M; Senior B; Koronakis E; Hughes C J Bacteriol; 1987 Apr; 169(4):1509-15. PubMed ID: 3549692 [TBL] [Abstract][Full Text] [Related]
7. CONSERVATION OF RIBOSOMAL AND MESSENGER RIBONUCLEIC ACID CISTRONS IN BACILLUS SPECIES. DOI RH; IGARASHI RT J Bacteriol; 1965 Aug; 90(2):384-90. PubMed ID: 14329452 [TBL] [Abstract][Full Text] [Related]
8. Cloning and expression in Escherichia coli of Proteus vulgaris genes for 16S ribosomal RNA. Niebel H; Dorsch M; Stackebrandt E J Gen Microbiol; 1987 Sep; 133(9):2401-9. PubMed ID: 3329212 [TBL] [Abstract][Full Text] [Related]
9. Decreased requirement for 4.5S RNA in 16S and 23S rRNA mutants of Escherichia coli. Brunelli CA; O'Connor M; Dahlberg AE FEBS Lett; 2002 Mar; 514(1):44-8. PubMed ID: 11904179 [TBL] [Abstract][Full Text] [Related]
10. The single-stranded-DNA-binding proteins (SSB) of Proteus mirabilis and Serratia marcescens. De Vries J; Genschel J; Urbanke C; Thole H; Wackernagel W Eur J Biochem; 1994 Sep; 224(2):613-22. PubMed ID: 7925378 [TBL] [Abstract][Full Text] [Related]
11. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase. Lewicki BT; Margus T; Remme J; Nierhaus KH J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441 [TBL] [Abstract][Full Text] [Related]
12. Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. VII. Mapping the ribosomal RNA genes of plasmid F14. Deonier RC; Otsubo E; Lee HJ; Davidson N J Mol Biol; 1974 Nov; 89(4):619-29. PubMed ID: 4615162 [No Abstract] [Full Text] [Related]
13. Location of the ribosomal RNA cistron of Escherichia coli: a second site. Unger M; Birnbaum LS; Kaplan S; Pfister A Mol Gen Genet; 1972; 119(4):377-80. PubMed ID: 4567810 [No Abstract] [Full Text] [Related]
14. Structural analysis of 5S rRNA, 5S rRNA-protein complexes and ribosomes employing RNase H and d(GTTCGG). Lorenz S; Hartmann RK; Piel N; Ulbrich N; Erdmann VA Eur J Biochem; 1987 Mar; 163(2):239-46. PubMed ID: 2434327 [TBL] [Abstract][Full Text] [Related]
15. Escherichia coli ribosome is inactivated by Mirabilis antiviral protein which cleaves the N-glycosidic bond at A2660 of 23 S ribosomal RNA. Habuka N; Miyano M; Kataoka J; Noma M J Mol Biol; 1991 Oct; 221(3):737-43. PubMed ID: 1719209 [TBL] [Abstract][Full Text] [Related]
16. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Branlant C; Krol A; Machatt MA; Pouyet J; Ebel JP; Edwards K; Kössel H Nucleic Acids Res; 1981 Sep; 9(17):4303-24. PubMed ID: 6170936 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the hybridization between purified 16S and 23S ribosomal ribonucleic acid and ribosomal deoxyribonucleic acid from Escherichia coli. Dennis PP; Nordan DH J Bacteriol; 1976 Oct; 128(1):28-34. PubMed ID: 789334 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of a putative internal promoter sequence between the 16S and the 23S RNA genes within the Escherichia coli rrnB operon. Zacharias M; Wagner R Mol Microbiol; 1989 Mar; 3(3):405-10. PubMed ID: 2473375 [TBL] [Abstract][Full Text] [Related]
19. Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Azad AA Nucleic Acids Res; 1979 Dec; 7(7):1913-29. PubMed ID: 94160 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of the 16S RNA's of Escherichia coli and Proteus vulgaris. Fischel JL; Krol A; Ehresmann C; Fellner P; Ebel JP Biochimie; 1975; 57(8):885-97. PubMed ID: 769841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]