These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7878732)

  • 1. Conserved sequence motifs in bacterial and bacteriophage chaperonins.
    Koonin EV; van der Vies SM
    Trends Biochem Sci; 1995 Jan; 20(1):14-5. PubMed ID: 7878732
    [No Abstract]   [Full Text] [Related]  

  • 2. Chaperonins of the purple nonsulfur bacterium Rhodobacter sphaeroides.
    Lee WT; Watson GW; Tabita FR
    Methods Enzymol; 1998; 290():154-61. PubMed ID: 9534159
    [No Abstract]   [Full Text] [Related]  

  • 3. Multiple chaperonins in bacteria--why so many?
    Lund PA
    FEMS Microbiol Rev; 2009 Jul; 33(4):785-800. PubMed ID: 19416363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chaperonins of Clostridium thermocellum.
    Cross SJ; Freedman RB
    Biochem Soc Trans; 1995 Feb; 23(1):67S. PubMed ID: 7758784
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of archaeal chaperonin from Sulfolobus shibatae.
    Quaite-Randall E; Joachimiak A
    Methods Mol Biol; 2000; 140():1-14. PubMed ID: 11484476
    [No Abstract]   [Full Text] [Related]  

  • 7. Cloning, sequencing, and functional expression in Escherichia coli of chaperonin (groESL) genes from Vibrio cholerae.
    Mizunoe Y; Wai SN; Umene K; Kokubo T; Kawabata S; Yoshida S
    Microbiol Immunol; 1999; 43(6):513-20. PubMed ID: 10480546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural and functional organization of intramolecular chaperones: the N-terminal propeptides which mediate protein folding.
    Shinde U; Inouye M
    J Biochem; 1994 Apr; 115(4):629-36. PubMed ID: 7916340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperone power in a virus?
    Kelley WL; Landry SJ
    Trends Biochem Sci; 1994 Jul; 19(7):277-8. PubMed ID: 7914037
    [No Abstract]   [Full Text] [Related]  

  • 10. The P5 protein from bacteriophage phi-6 is a distant homolog of lytic transglycosylases.
    Pei J; Grishin NV
    Protein Sci; 2005 May; 14(5):1370-4. PubMed ID: 15802648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperonin-like repeats in a 34-kDa Plasmodium berghei phosphoprotein.
    Wiser MF; Jennings GJ; Lockyer JM; van Belkum A; van Doorn LJ
    Parasitol Res; 1995; 81(2):167-9. PubMed ID: 7731926
    [No Abstract]   [Full Text] [Related]  

  • 12. GroE-mediated folding of bacterial luciferases in vivo.
    Escher A; Szalay AA
    Mol Gen Genet; 1993 Apr; 238(1-2):65-73. PubMed ID: 8097558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria.
    Ilyina TV; Koonin EV
    Nucleic Acids Res; 1992 Jul; 20(13):3279-85. PubMed ID: 1630899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin.
    Molugu SK; Hildenbrand ZL; Morgan DG; Sherman MB; He L; Georgopoulos C; Sernova NV; Kurochkina LP; Mesyanzhinov VV; Miroshnikov KA; Bernal RA
    Structure; 2016 Apr; 24(4):537-546. PubMed ID: 26996960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC.
    Waldmann T; Nimmesgern E; Nitsch M; Peters J; Pfeifer G; Müller S; Kellermann J; Engel A; Hartl FU; Baumeister W
    Eur J Biochem; 1995 Feb; 227(3):848-56. PubMed ID: 7867646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri.
    Andrä S; Frey G; Nitsch M; Baumeister W; Stetter KO
    FEBS Lett; 1996 Jan; 379(2):127-31. PubMed ID: 8635576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains.
    Szpikowska BK; Swiderek KM; Sherman MA; Mas MT
    Protein Sci; 1998 Jul; 7(7):1524-30. PubMed ID: 9684884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal domain of human Cdc37 studied by solution NMR.
    Zhang Z; Keramisanou D; Dudhat A; Paré M; Gelis I
    J Biomol NMR; 2015 Nov; 63(3):315-21. PubMed ID: 26400850
    [No Abstract]   [Full Text] [Related]  

  • 19. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.
    Kagawa HK; Osipiuk J; Maltsev N; Overbeek R; Quaite-Randall E; Joachimiak A; Trent JD
    J Mol Biol; 1995 Nov; 253(5):712-25. PubMed ID: 7473746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31.
    Rajaram H; Ballal AD; Apte SK; Wiegert T; Schumann W
    Biochim Biophys Acta; 2001 May; 1519(1-2):143-6. PubMed ID: 11406285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.