These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7879907)

  • 21. Temporary contacts formed between developing optic fibers in the chick.
    Arees EA; DeLong GR
    J Embryol Exp Morphol; 1977 Feb; 37(1):211-6. PubMed ID: 870592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the optic nerve in Xenopus laevis. I. Early development and organization.
    Cima C; Grant P
    J Embryol Exp Morphol; 1982 Dec; 72():225-49. PubMed ID: 7183741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell death in suboptic necrotic centers of chick embryo diencephalon and their topographic relationship with the earliest optic fiber fascicles.
    Navascués J; Martín-Partido G; Alvarez IS; Rodríguez-Gallardo L
    J Comp Neurol; 1988 Dec; 278(1):34-46. PubMed ID: 3209751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glial cells in the optic chiasm arise from the suboptic necrotic centers of the diencephalon floor: morphological evidence in the chick embryo.
    Navascués J; Martín-Partido G
    Neurosci Lett; 1990 Nov; 120(1):62-5. PubMed ID: 2293094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domains of regulatory gene expression and the developing optic chiasm: correspondence with retinal axon paths and candidate signaling cells.
    Marcus RC; Shimamura K; Sretavan D; Lai E; Rubenstein JL; Mason CA
    J Comp Neurol; 1999 Jan; 403(3):346-58. PubMed ID: 9886035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal axon divergence in the optic chiasm: uncrossed axons diverge from crossed axons within a midline glial specialization.
    Marcus RC; Blazeski R; Godement P; Mason CA
    J Neurosci; 1995 May; 15(5 Pt 2):3716-29. PubMed ID: 7751940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precocious invasion of the optic stalk by transient retinopetal axons.
    Reese BE; Geller SF
    J Comp Neurol; 1995 Mar; 353(4):572-84. PubMed ID: 7759616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The changing pattern of fibre bundles that pass through the optic chiasm of mice.
    Colello SJ; Guillery RW
    Eur J Neurosci; 1998 Dec; 10(12):3653-63. PubMed ID: 9875344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in morphology and behaviour of retinal growth cones before and after crossing the midline of the mouse chiasm - a confocal microscopy study.
    Chan SO; Wong KF; Chung KY; Yung WH
    Eur J Neurosci; 1998 Aug; 10(8):2511-22. PubMed ID: 9767382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early development of the optic nerve in the turtle Mauremys leprosa.
    Hidalgo-Sánchez M; Francisco-Morcillo J; Navascués J; Martín-Partido G
    Brain Res; 2007 Mar; 1137(1):35-49. PubMed ID: 17258694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of chondroitin sulfate proteoglycans in the chiasm of mouse embryos.
    Chung KY; Shum DK; Chan SO
    J Comp Neurol; 2000 Feb; 417(2):153-63. PubMed ID: 10660894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points.
    Hehr CL; Hocking JC; McFarlane S
    Development; 2005 Aug; 132(15):3371-9. PubMed ID: 15975939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the optic nerve in Xenopus laevis. II. Gliogenesis, myelination and metamorphic remodelling.
    Cima C; Grant P
    J Embryol Exp Morphol; 1982 Dec; 72():251-67. PubMed ID: 7183742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anterograde tracing of retinal axons in the avian embryo with low molecular weight derivatives of biotin.
    Halfter W
    Dev Biol; 1987 Feb; 119(2):322-35. PubMed ID: 2433173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway.
    Lin L; Taylor JS; Chan SO
    J Comp Neurol; 2002 Sep; 451(1):22-32. PubMed ID: 12209838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extra-axonal environment and fibre directionality in the early development of the chick embryo optic chiasm: a light and scanning electron microscopic study.
    Navascués J; Rodríguez-Gallardo L; García-Martínez V; Alvarez IS; Martín-Partido G
    J Neurocytol; 1987 Jun; 16(3):299-310. PubMed ID: 3612182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules.
    Rosentreter SM; Davenport RW; Löschinger J; Huf J; Jung J; Bonhoeffer F
    J Neurobiol; 1998 Dec; 37(4):541-62. PubMed ID: 9858257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental changes in the fibre population of the optic nerve follow an avian/mammalian-like pattern in the turtle Mauremys leprosa.
    Hidalgo-Sánchez M; Francisco-Morcillo J; Navascués J; Martín-Partido G
    Brain Res; 2006 Oct; 1113(1):74-85. PubMed ID: 16935267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.