These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 7880452)
1. Differential influence of corticosterone and dexamethasone on schedule-induced polydipsia in adrenalectomized rats. Cirulli F; van Oers H; De Kloet ER; Levine S Behav Brain Res; 1994 Nov; 65(1):33-9. PubMed ID: 7880452 [TBL] [Abstract][Full Text] [Related]
2. Role of the pituitary-adrenal hormones in the acquisition of schedule-induced polydipsia. Levine R; Levine S Behav Neurosci; 1989 Jun; 103(3):621-37. PubMed ID: 2544205 [TBL] [Abstract][Full Text] [Related]
3. Consequence of long-term exposure to corticosterone or dexamethasone on ethanol consumption in the adrenalectomized rat, and the effect of type I and type II corticosteroid receptor antagonists. Fahlke C; Hård E; Eriksson CJ; Engel JA; Hansen S Psychopharmacology (Berl); 1995 Jan; 117(2):216-24. PubMed ID: 7753970 [TBL] [Abstract][Full Text] [Related]
4. Binge-like ethanol consumption increases corticosterone levels and neurodegneration whereas occupancy of type II glucocorticoid receptors with mifepristone is neuroprotective. Cippitelli A; Damadzic R; Hamelink C; Brunnquell M; Thorsell A; Heilig M; Eskay RL Addict Biol; 2014 Jan; 19(1):27-36. PubMed ID: 22500955 [TBL] [Abstract][Full Text] [Related]
5. Differential regulation of type II corticosteroid receptor messenger ribonucleic acid expression in the rat anterior pituitary and hippocampus. Sheppard KE; Roberts JL; Blum M Endocrinology; 1990 Jul; 127(1):431-9. PubMed ID: 2361479 [TBL] [Abstract][Full Text] [Related]
6. Stress-induced cross-sensitization to cocaine: effect of adrenalectomy and corticosterone after short- and long-term withdrawal. Prasad BM; Ulibarri C; Sorg BA Psychopharmacology (Berl); 1998 Mar; 136(1):24-33. PubMed ID: 9537679 [TBL] [Abstract][Full Text] [Related]
7. Modulation of carbachol responsiveness in rat CA1 pyramidal neurons by corticosteroid hormones. Hesen W; Joëls M Brain Res; 1993 Nov; 627(1):159-67. PubMed ID: 8293296 [TBL] [Abstract][Full Text] [Related]
8. Modulation of a novel RNA in brain neurons by glucocorticoid and mineralocorticoid receptors. Masters JN; Cotman SL; Osterburg HH; Nichols NR; Finch CE Neuroendocrinology; 1996 Jan; 63(1):28-38. PubMed ID: 8839352 [TBL] [Abstract][Full Text] [Related]
9. Individual differences in the effects of chronic prazosin hydrochloride treatment on hippocampal mineralocorticoid and glucocorticoid receptors. Kabbaj M; Morley-Fletcher S; Le Moal M; Maccari S Eur J Neurosci; 2007 Jun; 25(11):3312-8. PubMed ID: 17552999 [TBL] [Abstract][Full Text] [Related]
10. Skeletal response to corticosteroid deficiency and excess in growing male rats. Li M; Shen Y; Halloran BP; Baumann BD; Miller K; Wronski TJ Bone; 1996 Aug; 19(2):81-8. PubMed ID: 8853849 [TBL] [Abstract][Full Text] [Related]
11. Effects of prenatal ethanol exposure on hypothalamic-pituitary-adrenal regulation after adrenalectomy and corticosterone replacement. Glavas MM; Hofmann CE; Yu WK; Weinberg J Alcohol Clin Exp Res; 2001 Jun; 25(6):890-7. PubMed ID: 11410726 [TBL] [Abstract][Full Text] [Related]
12. Centrally regulated blood pressure response to vasoactive peptides is modulated by corticosterone. van Acker SA; Oitzl MS; Fluttert MF; de Kloet ER J Neuroendocrinol; 2002 Jan; 14(1):56-63. PubMed ID: 11903813 [TBL] [Abstract][Full Text] [Related]
13. Effects of adrenal steroid agonists on food intake and macronutrient selection. Tempel DL; McEwen BS; Leibowitz SF Physiol Behav; 1992 Dec; 52(6):1161-6. PubMed ID: 1484876 [TBL] [Abstract][Full Text] [Related]
14. PVN steroid implants: effect on feeding patterns and macronutrient selection. Tempel DL; Leibowitz SF Brain Res Bull; 1989 Dec; 23(6):553-60. PubMed ID: 2611695 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of corticosteroids on rat peripheral blood T-lymphocyte mitogenesis in vivo and in vitro. Wiegers GJ; Croiset G; Reul JM; Holsboer F; de Kloet ER Am J Physiol; 1993 Dec; 265(6 Pt 1):E825-30. PubMed ID: 8279536 [TBL] [Abstract][Full Text] [Related]
16. A reexamination of the effects of intracerebroventricular glucocorticoids in adrenalectomized rats. Kamara KS; Kamara AK; Castonguay TW Brain Res Bull; 1992; 29(3-4):355-8. PubMed ID: 1393608 [TBL] [Abstract][Full Text] [Related]
17. Differential response of type I and type II corticosteroid receptors to changes in plasma steroid level and circadian rhythmicity. Reul JM; van den Bosch FR; de Kloet ER Neuroendocrinology; 1987 May; 45(5):407-12. PubMed ID: 3587523 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological evidence that the inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via type I corticosterone-preferring receptors. Dallman MF; Levin N; Cascio CS; Akana SF; Jacobson L; Kuhn RW Endocrinology; 1989 Jun; 124(6):2844-50. PubMed ID: 2542001 [TBL] [Abstract][Full Text] [Related]
19. Exercise endurance in rats: roles of type I and II corticosteroid receptors. Devenport L; Doughty D; Heiberger B; Burton D; Brown R; Stith R Physiol Behav; 1993 Jun; 53(6):1171-5. PubMed ID: 8346301 [TBL] [Abstract][Full Text] [Related]
20. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Makino S; Smith MA; Gold PW Endocrinology; 1995 Aug; 136(8):3299-309. PubMed ID: 7628364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]