BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 78805)

  • 1. [Effects of optic nerve section in baboons on the EEG activity and sleep-waking cycles].
    Vuillon-Cacciuttolo G; Seri B
    Electroencephalogr Clin Neurophysiol; 1978 Jun; 44(6):769-77. PubMed ID: 78805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of optic nerve section in baboons on the geniculate and cortical spike activity during various states of vigilance].
    Vuillon-Cacciuttolo G; Seri B
    Electroencephalogr Clin Neurophysiol; 1978 Jun; 44(6):754-68. PubMed ID: 78804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [States of wakefulness and ponto-geniculo-cortical activities (PGC) in Papio anubis (author's transl)].
    Balzamo E
    Electroencephalogr Clin Neurophysiol; 1980 Jun; 48(6):694-705. PubMed ID: 6155258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does para-chlorophenylalanine produce disturbed waking, disturbed sleep or activation by ponto-geniculo-occipital waves in cats?
    Ursin R
    Waking Sleeping; 1980; 4(3):211-21. PubMed ID: 6456599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep.
    Cantero JL; Atienza M; Salas RM; Dominguez-Marin E
    J Neurosci; 2002 Jun; 22(11):4702-8. PubMed ID: 12040077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing.
    Coenen AM
    Neurosci Biobehav Rev; 1995; 19(3):447-63. PubMed ID: 7566746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of ponto-geniculo-occipital waves by neurotoxic lesions of pontine caudo-lateral peribrachial cells.
    Datta S; Hobson JA
    Neuroscience; 1995 Aug; 67(3):703-12. PubMed ID: 7675196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure.
    Gorgoni M; Ferrara M; D'Atri A; Lauri G; Scarpelli S; Truglia I; De Gennaro L
    Sleep Med; 2015 Jul; 16(7):883-90. PubMed ID: 26004680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpositus and fastigial unit activity during sleep and waking in the cat.
    Palmer C
    Electroencephalogr Clin Neurophysiol; 1979 Apr; 46(4):357-70. PubMed ID: 85532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A key role for the caudoventral pontine tegmentum in the simultaneous generation of eye saccades in bursts and associated ponto-geniculo-occipital waves during paradoxical sleep in the cat.
    Vanni-Mercier G; Debilly G
    Neuroscience; 1998 Sep; 86(2):571-85. PubMed ID: 9881870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spike activity recorded at the level of optic tract in a primate, Papio papio].
    Balzamo E; Naquet R
    C R Seances Soc Biol Fil; 1975; 169(1):94-8. PubMed ID: 171037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a GABA(B) receptor antagonist on the sleep-waking cycle in the rat.
    Gauthier P; Arnaud C; Gandolfo G; Gottesmann C
    Brain Res; 1997 Oct; 773(1-2):8-14. PubMed ID: 9409699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG.
    Chapotot F; Pigeau R; Canini F; Bourdon L; Buguet A
    Psychopharmacology (Berl); 2003 Mar; 166(2):127-38. PubMed ID: 12552359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG alpha power and alpha power asymmetry in sleep and wakefulness.
    Benca RM; Obermeyer WH; Larson CL; Yun B; Dolski I; Kleist KD; Weber SM; Davidson RJ
    Psychophysiology; 1999 Jul; 36(4):430-6. PubMed ID: 10432792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sleep of the baboon, Papio papio, under natural conditions and in the laboratory.
    Bert J; Balzamo E; Chase M; Pegram V
    Electroencephalogr Clin Neurophysiol; 1975 Dec; 39(6):657-62. PubMed ID: 53145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional information flows between brain hemispheres across waking, non-REM and REM sleep states: an EEG study.
    Bertini M; Ferrara M; De Gennaro L; Curcio G; Moroni F; Babiloni C; Infarinato F; Rossini PM; Vecchio F
    Brain Res Bull; 2009 Mar; 78(6):270-5. PubMed ID: 19121373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.