These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 78805)
1. [Effects of optic nerve section in baboons on the EEG activity and sleep-waking cycles]. Vuillon-Cacciuttolo G; Seri B Electroencephalogr Clin Neurophysiol; 1978 Jun; 44(6):769-77. PubMed ID: 78805 [TBL] [Abstract][Full Text] [Related]
2. [Effects of optic nerve section in baboons on the geniculate and cortical spike activity during various states of vigilance]. Vuillon-Cacciuttolo G; Seri B Electroencephalogr Clin Neurophysiol; 1978 Jun; 44(6):754-68. PubMed ID: 78804 [TBL] [Abstract][Full Text] [Related]
3. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)]. Vuillon-Cacciuttolo G; Balzamo E; Naquet R Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195 [TBL] [Abstract][Full Text] [Related]
4. [States of wakefulness and ponto-geniculo-cortical activities (PGC) in Papio anubis (author's transl)]. Balzamo E Electroencephalogr Clin Neurophysiol; 1980 Jun; 48(6):694-705. PubMed ID: 6155258 [TBL] [Abstract][Full Text] [Related]
5. Does para-chlorophenylalanine produce disturbed waking, disturbed sleep or activation by ponto-geniculo-occipital waves in cats? Ursin R Waking Sleeping; 1980; 4(3):211-21. PubMed ID: 6456599 [TBL] [Abstract][Full Text] [Related]
7. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep. Cantero JL; Atienza M; Salas RM; Dominguez-Marin E J Neurosci; 2002 Jun; 22(11):4702-8. PubMed ID: 12040077 [TBL] [Abstract][Full Text] [Related]
8. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing. Coenen AM Neurosci Biobehav Rev; 1995; 19(3):447-63. PubMed ID: 7566746 [TBL] [Abstract][Full Text] [Related]
9. Suppression of ponto-geniculo-occipital waves by neurotoxic lesions of pontine caudo-lateral peribrachial cells. Datta S; Hobson JA Neuroscience; 1995 Aug; 67(3):703-12. PubMed ID: 7675196 [TBL] [Abstract][Full Text] [Related]
10. EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure. Gorgoni M; Ferrara M; D'Atri A; Lauri G; Scarpelli S; Truglia I; De Gennaro L Sleep Med; 2015 Jul; 16(7):883-90. PubMed ID: 26004680 [TBL] [Abstract][Full Text] [Related]
11. Interpositus and fastigial unit activity during sleep and waking in the cat. Palmer C Electroencephalogr Clin Neurophysiol; 1979 Apr; 46(4):357-70. PubMed ID: 85532 [TBL] [Abstract][Full Text] [Related]
12. A key role for the caudoventral pontine tegmentum in the simultaneous generation of eye saccades in bursts and associated ponto-geniculo-occipital waves during paradoxical sleep in the cat. Vanni-Mercier G; Debilly G Neuroscience; 1998 Sep; 86(2):571-85. PubMed ID: 9881870 [TBL] [Abstract][Full Text] [Related]
13. [Spike activity recorded at the level of optic tract in a primate, Papio papio]. Balzamo E; Naquet R C R Seances Soc Biol Fil; 1975; 169(1):94-8. PubMed ID: 171037 [TBL] [Abstract][Full Text] [Related]
14. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat. Maloney KJ; Cape EG; Gotman J; Jones BE Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337 [TBL] [Abstract][Full Text] [Related]
15. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Takahashi K; Lin JS; Sakai K Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001 [TBL] [Abstract][Full Text] [Related]
16. Influence of a GABA(B) receptor antagonist on the sleep-waking cycle in the rat. Gauthier P; Arnaud C; Gandolfo G; Gottesmann C Brain Res; 1997 Oct; 773(1-2):8-14. PubMed ID: 9409699 [TBL] [Abstract][Full Text] [Related]
17. Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG. Chapotot F; Pigeau R; Canini F; Bourdon L; Buguet A Psychopharmacology (Berl); 2003 Mar; 166(2):127-38. PubMed ID: 12552359 [TBL] [Abstract][Full Text] [Related]
18. EEG alpha power and alpha power asymmetry in sleep and wakefulness. Benca RM; Obermeyer WH; Larson CL; Yun B; Dolski I; Kleist KD; Weber SM; Davidson RJ Psychophysiology; 1999 Jul; 36(4):430-6. PubMed ID: 10432792 [TBL] [Abstract][Full Text] [Related]
19. The sleep of the baboon, Papio papio, under natural conditions and in the laboratory. Bert J; Balzamo E; Chase M; Pegram V Electroencephalogr Clin Neurophysiol; 1975 Dec; 39(6):657-62. PubMed ID: 53145 [TBL] [Abstract][Full Text] [Related]
20. Directional information flows between brain hemispheres across waking, non-REM and REM sleep states: an EEG study. Bertini M; Ferrara M; De Gennaro L; Curcio G; Moroni F; Babiloni C; Infarinato F; Rossini PM; Vecchio F Brain Res Bull; 2009 Mar; 78(6):270-5. PubMed ID: 19121373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]