BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7880724)

  • 1. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging.
    Jakobsen I; Kaalhus O; Lyng H; Rofstad EK
    Br J Cancer; 1995 Mar; 71(3):456-61. PubMed ID: 7880724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue.
    Rofstad EK; Steinsland E; Kaalhus O; Chang YB; Høvik B; Lyng H
    Int J Radiat Biol; 1994 Mar; 65(3):387-401. PubMed ID: 7908318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI of human tumor xenografts in vivo: proton relaxation times and extracellular tumor volume.
    Jakobsen I; Lyng H; Kaalhus O; Rofstad EK
    Magn Reson Imaging; 1995; 13(5):693-700. PubMed ID: 8569443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging of tumor necrosis.
    Egeland TA; Gaustad JV; Galappathi K; Rofstad EK
    Acta Oncol; 2011 Apr; 50(3):427-34. PubMed ID: 20950229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton relaxation times and interstitial fluid pressure in human melanoma xenografts.
    Lyng H; Tufto I; Skretting A; Rofstad EK
    Br J Cancer; 1997; 75(2):180-3. PubMed ID: 9010023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.
    Lyng H; Haraldseth O; Rofstad EK
    Magn Reson Med; 2000 Jun; 43(6):828-36. PubMed ID: 10861877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of T2-weighted imaging for shoulder magnetic resonance arthrography by synthetic magnetic resonance imaging.
    Lee SH; Lee YH; Hahn S; Yang J; Song HT; Suh JS
    Acta Radiol; 2018 Aug; 59(8):959-965. PubMed ID: 29137497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.
    Lyng H; Olsen DR; Petersen SB; Rofstad EK
    NMR Biomed; 1995 Apr; 8(2):65-71. PubMed ID: 7547188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental hepatic tumor necrosis. Comparison of spin-echo and pulsed magnetization transfer contrast magnetic resonance imaging.
    Li KC; Jeffrey RB; Ning SC; Kandil A; Hahn GM; Pike B; Glover G; Kosek J
    Invest Radiol; 1993 Oct; 28(10):896-902. PubMed ID: 8262743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of proliferation activity in human melanoma xenografts by magnetic resonance imaging.
    Olsen G; Lyng H; Tufto I; Solberg K; Bjørnaes I; Rofstad EK
    Magn Reson Imaging; 1999 Apr; 17(3):393-402. PubMed ID: 10195582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of turbo inversion recovery magnitude (TIRM) with T2-weighted turbo spin-echo and T1-weighted spin-echo MR imaging in the early diagnosis of acute osteomyelitis in children.
    Hauer MP; Uhl M; Allmann KH; Laubenberger J; Zimmerhackl LB; Langer M
    Pediatr Radiol; 1998 Nov; 28(11):846-50. PubMed ID: 9799315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of signal-to-noise ratio in calculated T1 images derived from two spin-echo images.
    Prato FS; Drost DJ; Keys T; Laxon P; Comissiong B; Sestini E
    Magn Reson Med; 1986 Feb; 3(1):63-75. PubMed ID: 3959891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic contrast-enhanced magnetic resonance imaging of human melanoma xenografts with necrotic regions.
    Gaustad JV; Benjaminsen IC; Ruud EB; Rofstad EK
    J Magn Reson Imaging; 2007 Jul; 26(1):133-43. PubMed ID: 17659570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumour T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumour cells--a preclinical MR study in mice.
    Weidensteiner C; Allegrini PR; Sticker-Jantscheff M; Romanet V; Ferretti S; McSheehy PM
    BMC Cancer; 2014 Feb; 14():88. PubMed ID: 24528602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo tissue characterization of human brain by chisquares parameter maps: multiparameter proton T2-relaxation analysis.
    Cheng KH
    Magn Reson Imaging; 1994; 12(7):1099-109. PubMed ID: 7997097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of hepatic VX2 carcinomas with ferucarbotran-enhanced magnetic resonance imaging in rabbits: Comparison of nine pulse sequences.
    Kim SH; Choi D; Lim HK; Kim MJ; Jang KM; Kim SH; Lee WJ; Lee J; Jeon YH; Lim JH
    Eur J Radiol; 2006 Sep; 59(3):413-23. PubMed ID: 16678373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro MR imaging of renal stones with an ultra-short echo time magnetic resonance imaging sequence.
    Yassin A; Pedrosa I; Kearney M; Genega E; Rofsky NM; Lenkinski RE
    Acad Radiol; 2012 Dec; 19(12):1566-72. PubMed ID: 22959582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal pulse sequences for magnetic resonance imaging-computing accurate t1, t2, and proton density images.
    Iwaoka H; Hirata T; Matsuura H
    IEEE Trans Med Imaging; 1987; 6(4):360-9. PubMed ID: 18244046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The AAPM/RSNA physics tutorial for residents. Contrast mechanisms in spin-echo MR imaging.
    Plewes DB
    Radiographics; 1994 Nov; 14(6):1389-404; quiz 1405-6. PubMed ID: 7855348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.