These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7880821)

  • 1. Structure and function in rhodopsin. Separation and characterization of the correctly folded and misfolded opsins produced on expression of an opsin mutant gene containing only the native intradiscal cysteine codons.
    Ridge KD; Lu Z; Liu X; Khorana HG
    Biochemistry; 1995 Mar; 34(10):3261-7. PubMed ID: 7880821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function.
    Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin.
    Karnik SS; Sakmar TP; Chen HB; Khorana HG
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8459-63. PubMed ID: 3186735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of the amino acids in the cytoplasmic loop connecting helices C and D in rhodopsin. Chemical reactivity in the dark state following single cysteine replacements.
    Ridge KD; Zhang C; Khorana HG
    Biochemistry; 1995 Jul; 34(27):8804-11. PubMed ID: 7612621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain.
    Anukanth A; Khorana HG
    J Biol Chem; 1994 Aug; 269(31):19738-44. PubMed ID: 8051054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.
    Davidson FF; Loewen PC; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opsin stability and folding: the role of Cys185 and abnormal disulfide bond formation in the intradiscal domain.
    McKibbin C; Toye AM; Reeves PJ; Khorana HG; Edwards PC; Villa C; Booth PJ
    J Mol Biol; 2007 Dec; 374(5):1309-18. PubMed ID: 17988684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palmitoylation of bovine opsin and its cysteine mutants in COS cells.
    Karnik SS; Ridge KD; Bhattacharya S; Khorana HG
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):40-4. PubMed ID: 8419942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels.
    Yang K; Farrens DL; Altenbach C; Farahbakhsh ZT; Hubbell WL; Khorana HG
    Biochemistry; 1996 Nov; 35(45):14040-6. PubMed ID: 8916888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled.
    Hwa J; Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10571-6. PubMed ID: 9380676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T; Khorana HG
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function in rhodopsin: the role of asparagine-linked glycosylation.
    Kaushal S; Ridge KD; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4024-8. PubMed ID: 8171029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.