These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7881196)

  • 1. The global bifurcation structure of the BVP neuronal model driven by periodic pulse trains.
    Doi S; Sato S
    Math Biosci; 1995 Feb; 125(2):229-50. PubMed ID: 7881196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bonhoeffer-van der Pol oscillator model of locked and non-locked behaviors of living pacemaker neurons.
    Nomura T; Sato S; Doi S; Segundo JP; Stiber MD
    Biol Cybern; 1993; 69(5-6):429-37. PubMed ID: 8274541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response characteristics of the BVP neuron model to periodic pulse inputs.
    Sato S; Doi S
    Math Biosci; 1992 Dec; 112(2):243-59. PubMed ID: 1490052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcation, chaos and suppression of chaos in FitzHugh-Nagumo nerve conduction model equation.
    Rajasekar S; Lakshmanan M
    J Theor Biol; 1994 Feb; 166(3):275-88. PubMed ID: 8159015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient chaotic rotating waves in a ring of unidirectionally coupled symmetric Bonhoeffer-van der Pol oscillators near a codimension-two bifurcation point.
    Horikawa Y; Kitajima H
    Chaos; 2012 Sep; 22(3):033115. PubMed ID: 23020454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sudden change from chaos to oscillation death in the Bonhoeffer-van der Pol oscillator under weak periodic perturbation.
    Sekikawa M; Shimizu K; Inaba N; Kita H; Endo T; Fujimoto K; Yoshinaga T; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056209. PubMed ID: 22181486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified radial isochron clock with slow and fast dynamics as a model of pacemaker neurons. Global bifurcation structure when driven by periodic pulse trains.
    Nomura T; Sato S; Doi S; Segundo JP; Stiber MD
    Biol Cybern; 1994; 72(2):93-101. PubMed ID: 7880922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current.
    Lee SG; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041924. PubMed ID: 16711853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of tonic spiking oscillations in a leech neuron model.
    Cymbalyuk G; Shilnikov A
    J Comput Neurosci; 2005 Jun; 18(3):255-63. PubMed ID: 15830162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of very slow neuronal rhythms and chaos near the Hopf bifurcation in single neuron models.
    Doi S; Kumagai S
    J Comput Neurosci; 2005 Dec; 19(3):325-56. PubMed ID: 16502240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias.
    Guevara MR; Glass L
    J Math Biol; 1982; 14(1):1-23. PubMed ID: 7077182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model.
    Dtchetgnia Djeundam SR; Yamapi R; Kofane TC; Aziz-Alaoui MA
    Chaos; 2013 Sep; 23(3):033125. PubMed ID: 24089961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcation structure of two coupled FHN neurons with delay.
    Farajzadeh Tehrani N; Razvan M
    Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of bistability: tonic spiking and bursting in a neuron model.
    Shilnikov A; Calabrese RL; Cymbalyuk G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056214. PubMed ID: 16089641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions.
    Fukai H; Doi S; Nomura T; Sato S
    Biol Cybern; 2000 Mar; 82(3):215-22. PubMed ID: 10664108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model.
    Gong PL; Xu JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031906. PubMed ID: 11308677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic forcing of a model sensory neuron.
    Laing CR; Longtin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051928. PubMed ID: 12786199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of subthreshold dynamics in neuronal signaling.
    Clay JR; Shrier A
    J Theor Biol; 1999 Mar; 197(2):207-16. PubMed ID: 10074394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifurcation of orbits and synchrony in inferior olive neurons.
    Lee KW; Singh SN
    J Math Biol; 2012 Sep; 65(3):465-91. PubMed ID: 21898110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects.
    He Z; Li C; Chen L; Cao Z
    Neural Netw; 2020 Jan; 121():497-511. PubMed ID: 31655446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.