These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7881973)

  • 1. A quantitative study of dual action of nickel ions on the taste response to calcium ions of single fibers of the frog glossopharyngeal nerve: inhibition and enhancement by nickel ions.
    Kitada Y
    Chem Senses; 1994 Oct; 19(5):401-11. PubMed ID: 7881973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative study of the enhancing effect of nickel ions on the taste response to sodium ions of single fibers of the frog glossopharyngeal nerve: competitive inhibition by calcium ions of the nickel-enhanced response to sodium ions.
    Kitada Y; Mitoh Y
    Chem Senses; 1996 Feb; 21(1):65-73. PubMed ID: 8646494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing effects of transition metals on the salt taste responses of single fibers of the frog glossopharyngeal nerve: specificity of and similarities among Ca2+, Mg2+ and Na+ taste responses.
    Kitada Y
    Chem Senses; 1994 Jun; 19(3):265-77. PubMed ID: 8055274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing effect of nickel ions on the response to magnesium ions of single fibers of the frog glossopharyngeal nerve: competitive inhibition by calcium ions of the nickel-enhanced response to magnesium ions.
    Kitada Y; Mitoh Y
    Chem Senses; 1997 Dec; 22(6):613-22. PubMed ID: 9455608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive inhibition of the nickel-induced response to choline by calcium ions in single water fibers of the frog glossopharyngeal nerve.
    Kitada Y
    Chem Senses; 1994 Dec; 19(6):641-50. PubMed ID: 7735843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taste responses to electrolytes in the frog glossopharyngeal nerve: enhancement by Ni2+ ions.
    Kitada Y
    Dent Jpn (Tokyo); 1990; 27(1):41-4. PubMed ID: 2099290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The responses to choline ions induced by transition metal ions in single water fibers of the frog glossopharyngeal nerve.
    Kitada Y
    Chem Senses; 1994 Dec; 19(6):627-40. PubMed ID: 7735842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anions modulate cation-induced responses of single units of the frog glossopharyngeal nerve.
    Kitada Y
    Brain Res; 1995 Oct; 694(1-2):253-63. PubMed ID: 8974652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different receptor sites for Ca2+ and Na+ in single water fibers of the frog glossopharyngeal nerve.
    Kitada Y
    Brain Res; 1986 Jul; 377(2):211-5. PubMed ID: 3488096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taste responses to electrolytes in the frog glossopharyngeal nerve: initial process of taste reception.
    Kitada Y
    Brain Res; 1990 Dec; 535(2):305-12. PubMed ID: 2073608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of enhancement of the responses of the frog glossopharyngeal nerve to electrolytes by enhancers.
    Okuda-Akabane K; Fukami H; Kitada Y
    Chem Senses; 2008 Jul; 33(6):523-30. PubMed ID: 18487524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of frog gustatory response by transition metal ions.
    Kashiwagura T; Kamo N; Kurihara K; Kobatake Y
    Brain Res; 1978 Mar; 142(3):570-5. PubMed ID: 305811
    [No Abstract]   [Full Text] [Related]  

  • 13. Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation.
    Shankar VS; Bax CM; Bax BE; Alam AS; Moonga BS; Simon B; Pazianas M; Huang CL; Zaidi M
    J Cell Physiol; 1993 Apr; 155(1):120-9. PubMed ID: 8385675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel and calcium ions modify the characteristics of the acetylcholine receptor-channel complex at the frog neuromuscular junction.
    Magleby KL; Weinstock MM
    J Physiol; 1980 Feb; 299():203-18. PubMed ID: 6247480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis.
    Hanamori T; Hirota K; Ishiko N
    J Gen Physiol; 1990 Jun; 95(6):1159-82. PubMed ID: 2374001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the water response in frog gustation: possible significance of surface potential.
    Sugawara M; Kashiwayanagi M; Kurihara K
    Brain Res; 1989 May; 486(2):269-73. PubMed ID: 2786441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of cations on the Ca2+ response of water fibers in the frog tongue.
    Kitada Y
    Jpn J Physiol; 1978; 28(4):413-22. PubMed ID: 309963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonic activity of parasympathetic efferent nerve fibers hyperpolarizes the resting membrane potential of frog taste cells.
    Sato T; Nishishita K; Kato Y; Okada Y; Toda K
    Chem Senses; 2006 May; 31(4):307-13. PubMed ID: 16469796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the contractile apparatus of skinned fibres of frog by the divalent cations barium, cadmium and nickel.
    Stephenson DG; Thieleczek R
    J Physiol; 1986 Nov; 380():75-92. PubMed ID: 3497265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve.
    Hanamori T; Miller IJ; Smith DV
    J Neurophysiol; 1988 Aug; 60(2):478-98. PubMed ID: 3171639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.