These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 78829)

  • 1. Human auditory sustained potentials. I. The nature of the response.
    Picton TW; Woods DL; Proulx GB
    Electroencephalogr Clin Neurophysiol; 1978 Aug; 45(2):186-97. PubMed ID: 78829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human auditory sustained potentials. II. Stimulus relationships.
    Picton TW; Woods DL; Proulx GB
    Electroencephalogr Clin Neurophysiol; 1978 Aug; 45(2):198-210. PubMed ID: 78830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Time-shrinking perception' in the visual system: a psychophysical and high-density ERP study.
    Nagaike A; Mitsudo T; Nakajima Y; Ogata K; Yamasaki T; Goto Y; Tobimatsu S
    Exp Brain Res; 2016 Nov; 234(11):3279-3290. PubMed ID: 27401472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous brain potentials associated with selective auditory attention.
    Hansen JC; Hillyard SA
    Electroencephalogr Clin Neurophysiol; 1980 Aug; 49(3-4):277-90. PubMed ID: 6158404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG co-recordings.
    N'Diaye K; Ragot R; Garnero L; Pouthas V
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):250-68. PubMed ID: 15464356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalp distribution of early (0 to 10 msec) auditory evoked responses.
    Martin ME; Moore EJ
    Arch Otolaryngol; 1977 Jun; 103(6):326-8. PubMed ID: 869764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attentional orienting across the sensory modalities.
    Talsma D; Kok A; Slagter HA; Cipriani G
    Brain Cogn; 2008 Feb; 66(1):1-10. PubMed ID: 17553604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of P50 auditory sensory gating measures in infants during active sleep.
    Hunter SK; Corral N; Ponicsan H; Ross RG
    Neuroreport; 2008 Jan; 19(1):79-82. PubMed ID: 18281897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man.
    Squires NK; Squires KC; Hillyard SA
    Electroencephalogr Clin Neurophysiol; 1975 Apr; 38(4):387-401. PubMed ID: 46819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological evidence for sequential activation of multiple brain regions during the auditory selective attention process in humans.
    Kasai K; Nakagome K; Itoh K; Koshida I; Fukuda M; Watanabe A; Kamio S; Murakami T; Hata A; Iwanami A; Hiramatsu KI; Kato N
    Neuroreport; 1999 Dec; 10(18):3837-42. PubMed ID: 10716219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory evoked potentials during sleep in normal children from ten days to three years of age.
    Barnet AB
    Electroencephalogr Clin Neurophysiol; 1975 Jul; 39(1):29-41. PubMed ID: 50197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related variations in evoked potentials to auditory stimuli in normal human subjects.
    Goodin DS; Squires KC; Henderson BH; Starr A
    Electroencephalogr Clin Neurophysiol; 1978 Apr; 44(4):447-58. PubMed ID: 76553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space.
    Alho K; Woods DL; Algazi A; Näätänen R
    Electroencephalogr Clin Neurophysiol; 1992 May; 82(5):356-68. PubMed ID: 1374704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticipatory attention during the sleep onset period.
    Yasuda K; Ray LB; Cote KA
    Conscious Cogn; 2011 Sep; 20(3):912-9. PubMed ID: 21269842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermodal selective attention. I. Effects on event-related potentials to lateralized auditory and visual stimuli.
    Woods DL; Alho K; Algazi A
    Electroencephalogr Clin Neurophysiol; 1992 May; 82(5):341-55. PubMed ID: 1374703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waking quantitative electroencephalogram and auditory event-related potentials following experimentally induced sleep fragmentation.
    Cote KA; Milner CE; Osip SL; Ray LB; Baxter KD
    Sleep; 2003 Sep; 26(6):687-94. PubMed ID: 14572121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameters of temporal recovery of the human auditory evoked potential.
    Roth WT; Krainz PL; Ford JM; Tinklenberg JR; Rothbart RM; Kopell BS
    Electroencephalogr Clin Neurophysiol; 1976 Jun; 40(6):623-32. PubMed ID: 57048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task.
    Chen Y; Huang X; Luo Y; Peng C; Liu C
    Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and separation of acoustic frequency following responses (FFRS) in man.
    Sohmer H; Pratt H
    Electroencephalogr Clin Neurophysiol; 1977 Apr; 42(4):493-500. PubMed ID: 66132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long latency evoked potential components in human slow wave sleep.
    Ujszászi J; Halász P
    Electroencephalogr Clin Neurophysiol; 1988 Jun; 69(6):516-22. PubMed ID: 2453328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.