These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7883043)

  • 1. Lipid specificity for membrane mediated partial unfolding of cytochrome c.
    de Jongh HH; Ritsema T; Killian JA
    FEBS Lett; 1995 Mar; 360(3):255-60. PubMed ID: 7883043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid specificity in the interaction of cytochrome c with anionic phospholipid bilayers revealed by solid-state 31P NMR.
    Pinheiro TJ; Watts A
    Biochemistry; 1994 Mar; 33(9):2451-8. PubMed ID: 8117705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles.
    Pinheiro TJ; Elöve GA; Watts A; Roder H
    Biochemistry; 1997 Oct; 36(42):13122-32. PubMed ID: 9335575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands.
    Elöve GA; Bhuyan AK; Roder H
    Biochemistry; 1994 Jun; 33(22):6925-35. PubMed ID: 8204626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding.
    Heimburg T; Angerstein B; Marsh D
    Biophys J; 1999 May; 76(5):2575-86. PubMed ID: 10233072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential interactions of apo- and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria.
    Demel RA; Jordi W; Lambrechts H; van Damme H; Hovius R; de Kruijff B
    J Biol Chem; 1989 Mar; 264(7):3988-97. PubMed ID: 2537300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study.
    Heimburg T; Marsh D
    Biophys J; 1993 Dec; 65(6):2408-17. PubMed ID: 8312479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane binding induces destabilization of cytochrome c structure.
    Muga A; Mantsch HH; Surewicz WK
    Biochemistry; 1991 Jul; 30(29):7219-24. PubMed ID: 1649625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of spin-labeled apocytochrome c and spin-labeled cytochrome c with negatively charged lipids studied by electron spin resonance.
    Snel MM; de Kruijff B; Marsh D
    Biochemistry; 1994 Jun; 33(23):7146-56. PubMed ID: 8003481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics in a protein-lipid complex: nuclear magnetic resonance measurements on the headgroup of cardiolipin when bound to cytochrome c.
    Spooner PJ; Duralski AA; Rankin SE; Pinheiro TJ; Watts A
    Biophys J; 1993 Jul; 65(1):106-12. PubMed ID: 8396450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stopped-flow NMR measurement of hydrogen exchange rates in reduced horse cytochrome c under strongly destabilizing conditions.
    Bhuyan AK; Udgaonkar JB
    Proteins; 1998 Aug; 32(2):241-7. PubMed ID: 9714163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an unfolding and refolding pathway in cytochrome c.
    Xu Y; Mayne L; Englander SW
    Nat Struct Biol; 1998 Sep; 5(9):774-8. PubMed ID: 9731770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis as a probe of thermal unfolding of cytochrome c.
    Wang L; Chen RX; Kallenbach NR
    Proteins; 1998 Mar; 30(4):435-41. PubMed ID: 9533627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of heme axial ligands in the conformational stability of the native and molten globule states of horse cytochrome c.
    Hamada D; Kuroda Y; Kataoka M; Aimoto S; Yoshimura T; Goto Y
    J Mol Biol; 1996 Feb; 256(1):172-86. PubMed ID: 8609608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct evidence for the cooperative unfolding of cytochrome c in lipid membranes from H-(2)H exchange kinetics.
    Pinheiro TJ; Cheng H; Seeholzer SH; Roder H
    J Mol Biol; 2000 Nov; 303(4):617-26. PubMed ID: 11054296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding.
    Das TK; Mazumdar S; Mitra S
    Eur J Biochem; 1998 Jun; 254(3):662-70. PubMed ID: 9688280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation.
    Shidoji Y; Hayashi K; Komura S; Ohishi N; Yagi K
    Biochem Biophys Res Commun; 1999 Oct; 264(2):343-7. PubMed ID: 10529366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.