These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7883076)

  • 1. Arrest of stomatal initials in Tradescantia is linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells.
    Boetsch J; Chin J; Croxdale J
    Dev Biol; 1995 Mar; 168(1):28-38. PubMed ID: 7883076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear aggregations of stomata and epidermal cells in Tradescantia leaves: evidence for their group patterning as a function of the cell cycle.
    Chin J; Wan Y; Smith J; Croxdale J
    Dev Biol; 1995 Mar; 168(1):39-46. PubMed ID: 7883077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory.
    Croxdale J; Smith J; Yandell B; Johnson JB
    Dev Biol; 1992 Jan; 149(1):158-67. PubMed ID: 1728585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis.
    Prats E; Gay AP; Mur LA; Thomas BJ; Carver TL
    J Exp Bot; 2006; 57(10):2211-26. PubMed ID: 16793847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
    Nejad AR; van Meeteren U
    J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana.
    Rezaei Nejad A; van Meeteren U
    J Exp Bot; 2008; 59(2):289-301. PubMed ID: 18238802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clonal analysis of stomatal development and patterning in Arabidopsis leaves.
    Serna L; Torres-Contreras J; Fenoll C
    Dev Biol; 2002 Jan; 241(1):24-33. PubMed ID: 11784092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism.
    Kaiser H; Kappen L
    J Exp Bot; 2001 Jun; 52(359):1303-13. PubMed ID: 11432949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of stomatal distribution on the Arabidopsis leaf surface.
    Nadeau JA; Sack FD
    Science; 2002 May; 296(5573):1697-700. PubMed ID: 12040198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule arrays and Arabidopsis stomatal development.
    Lucas JR; Nadeau JA; Sack FD
    J Exp Bot; 2006; 57(1):71-9. PubMed ID: 16303827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity.
    Rezaei Nejad A; Harbinson J; van Meeteren U
    J Exp Bot; 2006; 57(14):3669-78. PubMed ID: 16982653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clonal analysis of epidermal patterning during maize leaf development.
    Hernandez ML; Passas HJ; Smith LG
    Dev Biol; 1999 Dec; 216(2):646-58. PubMed ID: 10642799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal neighbor cell polarity and division in Arabidopsis.
    Geisler MJ; Deppong DO; Nadeau JA; Sack FD
    Planta; 2003 Feb; 216(4):571-9. PubMed ID: 12569398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement.
    Talbott LD; Hammad JW; Harn LC; Nguyen VH; Patel J; Zeiger E
    Plant Cell Physiol; 2006 Mar; 47(3):332-9. PubMed ID: 16418232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the mesophyll in stomatal responses to light and CO2.
    Mott KA; Sibbernsen ED; Shope JC
    Plant Cell Environ; 2008 Sep; 31(9):1299-306. PubMed ID: 18541006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.
    Hara K; Yokoo T; Kajita R; Onishi T; Yahata S; Peterson KM; Torii KU; Kakimoto T
    Plant Cell Physiol; 2009 Jun; 50(6):1019-31. PubMed ID: 19435754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stomatal responses to humidity in isolated epidermes.
    Shope JC; Peak D; Mott KA
    Plant Cell Environ; 2008 Sep; 31(9):1290-8. PubMed ID: 18541007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant development: three steps for stomata.
    Gray JE
    Curr Biol; 2007 Mar; 17(6):R213-5. PubMed ID: 17371761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.