These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7883564)

  • 1. A comparison of techniques used to estimate the amount of resuspended soil on plant surfaces.
    Hinton TG; Kopp P; Ibrahim S; Bubryak I; Syomov A; Tobler L; Bell C
    Health Phys; 1995 Apr; 68(4):523-31. PubMed ID: 7883564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of crop contamination by soil resuspension within the 30-km zone of the Chernobyl nuclear power plant.
    Sauras-Yera T; Tent J; Ivanov Y; Hinton TG; Rauret G; Vallejo R
    Environ Sci Technol; 2003 Oct; 37(20):4592-6. PubMed ID: 14594366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry.
    Ketterer ME; Hafer KM; Mietelski JW
    J Environ Radioact; 2004; 73(2):183-201. PubMed ID: 15023447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fallout radioactivity in soil and food samples in the Ukraine: measurements of iodine, plutonium, cesium, and strontium isotopes.
    Hoshi M; Yamamoto M; Kawamura H; Shinohara K; Shibata Y; Kozlenko MT; Takatsuji T; Yamashita S; Namba H; Yokoyama N
    Health Phys; 1994 Aug; 67(2):187-91. PubMed ID: 7619095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of irradiated reactor uranium in soil samples in Belarus using 236U as irradiated uranium tracer.
    Mironov VP; Matusevich JL; Kudrjashov VP; Boulyga SF; Becker JS
    J Environ Monit; 2002 Dec; 4(6):997-1002. PubMed ID: 12509057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands.
    Alewell C; Meusburger K; Juretzko G; Mabit L; Ketterer ME
    Chemosphere; 2014 May; 103():274-80. PubMed ID: 24374184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of 241Pu in the environmental samples.
    Varga B; Tarján S
    Appl Radiat Isot; 2008 Feb; 66(2):265-70. PubMed ID: 17988880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of resuspended aerosol in the Chernobyl area. Part III. Size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension.
    Garger EK; Paretzke HG; Tschiersch J
    Radiat Environ Biophys; 1998 Oct; 37(3):201-8. PubMed ID: 9840490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 137Cs soil-to-plant transfer for individual species in a semi-natural grassland. Influence of potassium soil content.
    Ciuffo L; Velasco H; Belli M; Sansone U
    J Radiat Res; 2003 Sep; 44(3):277-83. PubMed ID: 14646233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pu-241 in samples of forest soil from Poland.
    Mietelski JW; Dorda J; Was B
    Appl Radiat Isot; 1999 Oct; 51(4):435-47. PubMed ID: 10464916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil-plant transfer of plutonium and americium in contaminated regions of Belarus after the Chernobyl catastrophe.
    Sokolik GA; Ovsiannikova SV; Ivanova TG; Leinova SL
    Environ Int; 2004 Sep; 30(7):939-47. PubMed ID: 15196842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources for Pu in near surface air.
    Hartmann G; Thom C; Bächmann K
    Health Phys; 1989 Jan; 56(1):55-69. PubMed ID: 2909504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition and distribution of Chernobyl fallout fission products and actinides in a Russian soil profile.
    Carbol P; Solatie D; Erdmann N; Nylén T; Betti M
    J Environ Radioact; 2003; 68(1):27-46. PubMed ID: 12726697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass loading of soil particles on plant surfaces.
    Pinder JE; McLeod KW
    Health Phys; 1989 Dec; 57(6):935-42. PubMed ID: 2584028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and release date assessment of environmental plutonium by isotopic composition.
    Varga Z
    Anal Bioanal Chem; 2007 Oct; 389(3):725-32. PubMed ID: 17554528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of the plutonium due to atomic explosion in 1945 from global fallout plutonium in Nagasaki soil.
    Yamamoto M; Komura K; Sakanoue M
    J Radiat Res; 1983 Sep; 24(3):250-8. PubMed ID: 6663541
    [No Abstract]   [Full Text] [Related]  

  • 17. Environmental study of fall-out (239+240)Pu in soil samples in Iran.
    Aliabadi M; Amidi J; Alirezazadeh N; Attarilar A
    J Environ Radioact; 2005; 79(3):309-14. PubMed ID: 15607517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plutonium isotopes in the Hungarian environment.
    Varga B; Tarján S; Vajda N
    J Environ Radioact; 2008 Apr; 99(4):641-8. PubMed ID: 17983692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved determination of plutonium content and isotopic ratios in low activity samples by alpha-particle and underground L X-ray measurement.
    Arnold D
    Appl Radiat Isot; 2006; 64(10-11):1137-40. PubMed ID: 16621582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of fallout radionuclides, (239)(,240)Pu and (137)Cs, in soil and creek sediment: Sydney Basin, Australia.
    Smith BS; Child DP; Fierro D; Harrison JJ; Heijnis H; Hotchkis MA; Johansen MP; Marx S; Payne TE; Zawadzki A
    J Environ Radioact; 2016 Jan; 151 Pt 3():579-86. PubMed ID: 26344369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.