These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 7883704)
1. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. Ng LC; Poh CL; Shingler V J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704 [TBL] [Abstract][Full Text] [Related]
2. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Shingler V; Bartilson M; Moore T J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869 [TBL] [Abstract][Full Text] [Related]
3. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related]
4. An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. Pavel H; Forsman M; Shingler V J Bacteriol; 1994 Dec; 176(24):7550-7. PubMed ID: 8002579 [TBL] [Abstract][Full Text] [Related]
5. Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. Fernández S; Shingler V; De Lorenzo V J Bacteriol; 1994 Aug; 176(16):5052-8. PubMed ID: 8051017 [TBL] [Abstract][Full Text] [Related]
6. Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with sigma70. Herrera MC; Ramos JL J Mol Biol; 2007 Mar; 366(5):1374-86. PubMed ID: 17217960 [TBL] [Abstract][Full Text] [Related]
7. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Song J; Jensen RA Mol Microbiol; 1996 Nov; 22(3):497-507. PubMed ID: 8939433 [TBL] [Abstract][Full Text] [Related]
8. Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Ng LC; Shingler V; Sze CC; Poh CL Gene; 1994 Dec; 151(1-2):29-36. PubMed ID: 7828892 [TBL] [Abstract][Full Text] [Related]
9. Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. Byrne AM; Olsen RH J Bacteriol; 1996 Nov; 178(21):6327-37. PubMed ID: 8892837 [TBL] [Abstract][Full Text] [Related]
10. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. Shingler V; Moore T J Bacteriol; 1994 Mar; 176(6):1555-60. PubMed ID: 8132448 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Marqués S; Ramos JL Mol Microbiol; 1993 Sep; 9(5):923-9. PubMed ID: 7934920 [TBL] [Abstract][Full Text] [Related]
12. PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. Herrera MC; Krell T; Zhang X; Ramos JL J Mol Biol; 2009 Dec; 394(3):576-86. PubMed ID: 19781550 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53. Gallegos MT; Williams PA; Ramos JL J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of the PhhR regulon in Pseudomonas putida. Herrera MC; Duque E; Rodríguez-Herva JJ; Fernández-Escamilla AM; Ramos JL Environ Microbiol; 2010 Jun; 12(6):1427-38. PubMed ID: 20050871 [TBL] [Abstract][Full Text] [Related]
15. Genetic evidence for interdomain regulation of the phenol-responsive final sigma54-dependent activator DmpR. Ng LC; O'Neill E; Shingler V J Biol Chem; 1996 Jul; 271(29):17281-6. PubMed ID: 8663326 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. Marqués S; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1994 May; 176(9):2517-24. PubMed ID: 8169200 [TBL] [Abstract][Full Text] [Related]
17. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Shingler V; Pavel H Mol Microbiol; 1995 Aug; 17(3):505-13. PubMed ID: 8559069 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ramos JL; Marqués S; Timmis KN Annu Rev Microbiol; 1997; 51():341-73. PubMed ID: 9343354 [TBL] [Abstract][Full Text] [Related]
19. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis. Ray S; Banerjee A J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616 [TBL] [Abstract][Full Text] [Related]
20. Growth phase-dependent transcription of the sigma(54)-dependent Po promoter controlling the Pseudomonas-derived (methyl)phenol dmp operon of pVI150. Sze CC; Moore T; Shingler V J Bacteriol; 1996 Jul; 178(13):3727-35. PubMed ID: 8682773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]