BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7883752)

  • 1. Identification of the reactive site of ascidian trypsin inhibitor.
    Kumazaki T; Ishii S; Yokosawa H
    J Biochem; 1994 Oct; 116(4):787-93. PubMed ID: 7883752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary structure of ascidian trypsin inhibitors in the hemolymph of a solitary ascidian, Halocynthia roretzi.
    Kumazaki T; Hoshiba N; Yokosawa H; Ishii S
    J Biochem; 1990 Mar; 107(3):409-13. PubMed ID: 2341375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of the active derivative bovine trypsin-kallikrein inhibitor (Kunitz) with the reactive site lysine-15 -- alanine-16 hydrolyzed.
    Jering H; Tschesche H
    Eur J Biochem; 1976 Jan; 61(2):443-52. PubMed ID: 942916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypsin inhibitor in the hemolymph of a solitary ascidian, Halocynthia roretzi. Purification and characterization.
    Yokosawa H; Odajima R; Ishii S
    J Biochem; 1985 Jun; 97(6):1621-30. PubMed ID: 4030742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis-resynthesis equilibrium of the lysine-15--alanine-16 peptide bond in bovine trypsin inhibitor (Kunitz).
    Tschesche H; Kupfer S
    Hoppe Seylers Z Physiol Chem; 1976 Jun; 357(6):769-76. PubMed ID: 8370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.
    Krishnamoorthi R; Gong YX; Lin CL; VanderVelde D
    Biochemistry; 1992 Jan; 31(3):898-904. PubMed ID: 1731946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide bridge structure of ascidian trypsin inhibitor I: similarity to Kazal-type inhibitors.
    Kumazaki T; Ishii S
    J Biochem; 1990 Mar; 107(3):414-9. PubMed ID: 2111316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition mechanism of a peanut trypsin-chymotrypsin inhibitor, B-III: determination of the reactive sites for trypsin and chymotrypsin.
    Norioka S; Ikenaka T
    J Biochem; 1984 Oct; 96(4):1155-64. PubMed ID: 6520118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of a 58,000-Da proteinase inhibitor from the hemolymph of a solitary ascidian, Halocynthia roretzi.
    Shishikura F; Abe T; Ohtake S; Tanaka K
    Comp Biochem Physiol B Biochem Mol Biol; 1996 May; 114(1):1-9. PubMed ID: 8759295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and partial characterization of the trypsin inhibitor from the seeds of Brassica oleracea var. sabellica.
    Wilimowska-Pelc A
    Acta Biochim Pol; 1985; 32(4):351-61. PubMed ID: 3832704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-enzymatic replacement of Ile64 in the reactive site of soybeen trypsin inhibitor (Kunitz).
    Kowalski D; Laskowski M
    Biochemistry; 1976 Mar; 15(6):1300-9. PubMed ID: 1252449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reactive site of eggplant trypsin inhibitor.
    Yamada M; Tashiro M; Yamaguchi H; Yamada H; Ibuki F
    J Biochem; 1976 Dec; 80(6):1293-7. PubMed ID: 14122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-independent acylation of the vaccinia virus A-type inclusion protein.
    Yoder JD; Chen T; Hruby DE
    Biochemistry; 2004 Jul; 43(26):8297-302. PubMed ID: 15222742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of ascidian trypsin inhibitor determined by nuclear magnetic resonance spectroscopy.
    Hemmi H; Yoshida T; Kumazaki T; Nemoto N; Hasegawa J; Nishioka F; Kyogoku Y; Yokosawa H; Kobayashi Y
    Biochemistry; 2002 Aug; 41(34):10657-64. PubMed ID: 12186551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site.
    Grasberger BL; Clore GM; Gronenborn AM
    Structure; 1994 Jul; 2(7):669-78. PubMed ID: 7922043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical-enzymatic insertion of an amino acid residue in the reactive site of soybean trypsin inhibitor (Kunitz).
    Kowalski D; Laskowski M
    Biochemistry; 1976 Mar; 15(6):1309-15. PubMed ID: 1252450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH dependence of the equilibrium constant KHyd for the hydrolysis of the Lys15-Ala16 reactive-site peptide bond in bovine pancreatic trypsin inhibitor (aprotinin).
    Siekmann J; Wenzel HR; Matuszak E; von Goldammer E; Tschesche H
    J Protein Chem; 1988 Oct; 7(5):633-40. PubMed ID: 2475132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The position of the reactive site peptide bond in eggplant trypsin inhibitor molecule.
    Ibuki F; Kotaru M; Katsurada A; Asao T; Tashiro M; Kanamori M
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(2):119-26. PubMed ID: 7400862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypsin reactivity site of the Vicia angustifolia proteinase inhibitor.
    Abe O; Shimokawa Y; Araki T; Kuromizu K
    J Biochem; 1978 Jun; 83(6):1749-56. PubMed ID: 670165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of silkworm larval hemolymph antitrypsin and bovine trypsin.
    Sasaki T; Kobayashi K; Ozeki T
    J Biochem; 1987 Aug; 102(2):433-41. PubMed ID: 3667576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.