These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7884238)

  • 21. Development of scanned focussed ultrasound hyperthermia: clinical response evaluation.
    Harari PM; Hynynen KH; Roemer RB; Anhalt DP; Shimm DS; Stea B; Cassady JR
    Int J Radiat Oncol Biol Phys; 1991 Aug; 21(3):831-40. PubMed ID: 1869473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local hyperthermia with MR-guided focused ultrasound: spiral trajectory of the focal point optimized for temperature uniformity in the target region.
    Salomir R; Palussière J; Vimeux FC; de Zwart JA; Quesson B; Gauchet M; Lelong P; Pergrale J; Grenier N; Moonen CT
    J Magn Reson Imaging; 2000 Oct; 12(4):571-83. PubMed ID: 11042639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study of temperature elevation at muscle/bone interface during ultrasound hyperthermia.
    Lin WL; Liauh CT; Chen YY; Liu HC; Shieh MJ
    Med Phys; 2000 May; 27(5):1131-40. PubMed ID: 10841420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study.
    Ho CS; Ju KC; Cheng TY; Chen YY; Lin WL
    Phys Med Biol; 2007 Aug; 52(15):4585-99. PubMed ID: 17634652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of blood perfusion rate on the temperature distributions induced by multiple, scanned and focused ultrasonic beams in dogs' kidneys in vivo.
    Hynynen K; DeYoung D; Kundrat M; Moros E
    Int J Hyperthermia; 1989; 5(4):485-97. PubMed ID: 2746052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood flow cooling and ultrasonic lesion formation.
    Kolios MC; Sherar MD; Hunt JW
    Med Phys; 1996 Jul; 23(7):1287-98. PubMed ID: 8839425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.
    Hutchinson EB; Hynynen K
    Med Phys; 1998 Dec; 25(12):2392-9. PubMed ID: 9874833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal power deposition in hyperthermia. I. The treatment goal: the ideal temperature distribution: the role of large blood vessels.
    Roemer RB
    Int J Hyperthermia; 1991; 7(2):317-41. PubMed ID: 1880458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental evaluation of two simple thermal models using transient temperature analysis.
    Kolios MC; Worthington AE; Sherar MD; Hunt JW
    Phys Med Biol; 1998 Nov; 43(11):3325-40. PubMed ID: 9832019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of curved tissue layers on the power deposition patterns of therapeutic ultrasound beams.
    Fan X; Hynynen K
    Med Phys; 1994 Jan; 21(1):25-34. PubMed ID: 8164584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy.
    Yuan P
    Med Eng Phys; 2008 Mar; 30(2):135-43. PubMed ID: 17493861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced ultrasonic techniques for local tumor hyperthermia.
    Lele PP
    Radiol Clin North Am; 1989 May; 27(3):559-75. PubMed ID: 2648459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pilot point temperature regulation for thermal lesion control during ultrasound thermal therapy.
    Liu HL; Chen YY; Yen JY; Lin WL
    Med Biol Eng Comput; 2004 Mar; 42(2):178-88. PubMed ID: 15125147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing ultrasound focus distributions for hyperthermia.
    Lalonde RJ; Hunt JW
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):981-90. PubMed ID: 8582728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fully tuned RBF neural network controller for ultrasound hyperthermia cancer tumour therapy.
    Karar ME; El-Brawany MA
    Network; 2018; 29(1-4):20-36. PubMed ID: 30404543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared.
    Roemer RB; Fletcher AM; Cetas TC
    Int J Radiat Oncol Biol Phys; 1985 Aug; 11(8):1539-50. PubMed ID: 4019278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.