These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7884479)

  • 1. Development of thyrotropin-releasing hormone and norepinephrine potentiation of inspiratory-related hypoglossal motoneuron discharge in neonatal and juvenile mice in vitro.
    Funk GD; Smith JC; Feldman JL
    J Neurophysiol; 1994 Nov; 72(5):2538-41. PubMed ID: 7884479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists.
    Selvaratnam SR; Parkis MA; Funk GD
    Brain Res; 1998 Sep; 805(1-2):104-15. PubMed ID: 9733937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noradrenergic modulation of XII motoneuron inspiratory activity does not involve alpha2-receptor inhibition of the Ih current or presynaptic glutamate release.
    Adachi T; Robinson DM; Miles GB; Funk GD
    J Appl Physiol (1985); 2005 Apr; 98(4):1297-308. PubMed ID: 15579572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-SaubiƩ M
    J Neurophysiol; 1996 Feb; 75(2):811-9. PubMed ID: 8714654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids.
    Funk GD; Smith JC; Feldman JL
    J Neurophysiol; 1993 Oct; 70(4):1497-515. PubMed ID: 8283211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro.
    Yasuda K; Robinson DM; Selvaratnam SR; Walsh CW; McMorland AJ; Funk GD
    J Physiol; 2001 Jul; 534(Pt. 2):447-64. PubMed ID: 11454963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental modulation of glutamatergic inspiratory drive to hypoglossal motoneurons.
    Funk GD; Parkis MA; Selvaratnam SR; Walsh C
    Respir Physiol; 1997 Nov; 110(2-3):125-37. PubMed ID: 9407606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory synaptic transmission governs inspiratory motoneuron synchronization.
    Sebe JY; van Brederode JF; Berger AJ
    J Neurophysiol; 2006 Jul; 96(1):391-403. PubMed ID: 16510772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic control of motoneuron excitability in rodents: from months to milliseconds.
    Funk GD; Parkis MA; Selvaratnam SR; Robinson DM; Miles GB; Peebles KC
    Clin Exp Pharmacol Physiol; 2000; 27(1-2):120-5. PubMed ID: 10696540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats.
    Al-Zubaidy ZA; Erickson RL; Greer JJ
    Pflugers Arch; 1996 Apr; 431(6):942-9. PubMed ID: 8927513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo: a molecular physiological analysis.
    Funk GD; Kanjhan R; Walsh C; Lipski J; Comer AM; Parkis MA; Housley GD
    J Neurosci; 1997 Aug; 17(16):6325-37. PubMed ID: 9236242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro.
    Alvares TS; Revill AL; Huxtable AG; Lorenz CD; Funk GD
    J Physiol; 2014 Jul; 592(14):3089-111. PubMed ID: 24879869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A muscarinic, GIRK channel-mediated inhibition of inspiratory-related XII nerve motor output emerges in early postnatal development in mice.
    Rudy SL; Wealing JC; Banayat T; Black C; Funk GD; Revill AL
    J Appl Physiol (1985); 2023 Nov; 135(5):1041-1052. PubMed ID: 37767557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine vasopressin potentiates inspiratory bursting in hypoglossal motoneurons of neonatal mice.
    Bolte KN; Wealing JC; Revill AL
    Respir Physiol Neurobiol; 2023 Aug; 314():104087. PubMed ID: 37269889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclothiazide-induced persistent increase in respiratory-related activity in vitro.
    Babiec WE; Faull KF; Feldman JL
    J Physiol; 2012 Oct; 590(19):4897-915. PubMed ID: 22753547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturational changes in the respiratory rhythm generator of the mouse.
    Paton JF; Richter DW
    Pflugers Arch; 1995 May; 430(1):115-24. PubMed ID: 7667071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyrotropin-releasing hormone inputs are preferentially directed towards respiratory motoneurons in rat nucleus ambiguus.
    Sun QJ; Pilowsky P; Llewellyn-Smith IJ
    J Comp Neurol; 1995 Nov; 362(3):320-30. PubMed ID: 8576442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory pre-motor control of hypoglossal motoneurons in the rat.
    Peever JH; Shen L; Duffin J
    Neuroscience; 2002; 110(4):711-22. PubMed ID: 11934478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of neural network activity in vitro by cyclothiazide, a drug that blocks desensitization of AMPA receptors.
    Funk GD; Smith JC; Feldman JL
    J Neurosci; 1995 May; 15(5 Pt 2):4046-56. PubMed ID: 7751964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice.
    Robinson DM; Peebles KC; Kwok H; Adams BM; Clarke LL; Woollard GA; Funk GD
    J Physiol; 2002 Feb; 538(Pt 3):957-73. PubMed ID: 11826179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.