BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 788467)

  • 1. Regulation of methionine synthesis in Saccharomyces cerevisiae operates through independent signals: methionyl-tRNAmet and S-adenosylmethionine.
    Surdin-Kerjan Y; Cherest H; De Robichon-Szulmajster H
    Acta Microbiol Acad Sci Hung; 1976; 23(2):109-20. PubMed ID: 788467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H
    J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Existence of two levels of repression in the biosynthesis of methionine in Saccharomyces cerevisiae: effect of lomofungin on enzyme synthesis.
    Surdin-Kerjan Y; de Robichon-Szulmajster H
    J Bacteriol; 1975 May; 122(2):367-74. PubMed ID: 1092647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionyl-transfer ribonucleic acid deficiency during G1 arrest of Saccharomyces cerevisiae.
    Unger MW
    J Bacteriol; 1977 Apr; 130(1):11-9. PubMed ID: 323218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10.
    Cherest H; Surdin-Kerjan Y; Antoniewski J; de Robichon-Szulmajster H
    J Bacteriol; 1973 Sep; 115(3):1084-93. PubMed ID: 4580557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; Antoniewski J; Robichon-Szulmajster H
    J Bacteriol; 1973 Jun; 114(3):928-33. PubMed ID: 4576408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization, one-step purification, and immobilization.
    Luo Y; Yuan Z; Luo G; Zhao F
    Biotechnol Prog; 2008; 24(1):214-20. PubMed ID: 18078345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionine metabolism in BHK cells: the regulation of methionine adenosyltransferase.
    Caboche M
    J Cell Physiol; 1977 Sep; 92(3):407-24. PubMed ID: 903381
    [No Abstract]   [Full Text] [Related]  

  • 10. Induction and repression in the S-adenosylmethionine and methionine biosynthetic systems of Saccharomyces cerevisiae.
    Ferro AJ; Spence KD
    J Bacteriol; 1973 Nov; 116(2):812-7. PubMed ID: 4583251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and regulatory effects of methionine analogues in Saccharomyces cerevisiae.
    Colombani F; Cherest H; de Robichon-Szulmajster H
    J Bacteriol; 1975 May; 122(2):375-84. PubMed ID: 1092648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Larsen JT; Korch C
    Yeast; 1991 Nov; 7(8):781-803. PubMed ID: 1789001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNAs undermethylation in a met-regulatory mutant of Saccharomyces cerevisiae.
    Fesneau C; de Robichon-Szulmajster H; Fradin A; Feldmann H
    Biochimie; 1975; 57(1):49-59. PubMed ID: 1096967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between methionyl transfer ribonucleic acid cellular content and synthesis of methionine enzymes in Saccharomyces cerevisiae.
    Surdin-Kerjan Y; Cherest H; Robichon-Szulmajster H
    J Bacteriol; 1973 Mar; 113(3):1156-60. PubMed ID: 4570771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pre-L-methionine feeding strategy for S-adenosyl-L-methionine fermentative production].
    Wang J; Tan T
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1824-7. PubMed ID: 19149199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-adenosylmethionine attenuates hepatic lipid synthesis in micropigs fed ethanol with a folate-deficient diet.
    Esfandiari F; You M; Villanueva JA; Wong DH; French SW; Halsted CH
    Alcohol Clin Exp Res; 2007 Jul; 31(7):1231-9. PubMed ID: 17577393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed.
    Paszewski A; Ono BI
    Curr Genet; 1992 Oct; 22(4):273-5. PubMed ID: 1394507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway.
    Kanai M; Masuda M; Takaoka Y; Ikeda H; Masaki K; Fujii T; Iefuji H
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1183-90. PubMed ID: 22790542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae.
    Antoniewski J; Robichon-Szulmajster H
    Biochimie; 1973 May; 55(5):529-39. PubMed ID: 4585174
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.