These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7886210)

  • 21. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myelination of axons emerging from neural progenitor grafts after spinal cord injury.
    Hunt M; Lu P; Tuszynski MH
    Exp Neurol; 2017 Oct; 296():69-73. PubMed ID: 28698030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat.
    Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T
    Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of an embryonic repair graft on recovery from spinal cord injury.
    Kawaguchi S; Iseda T; Nishio T
    Prog Brain Res; 2004; 143():155-62. PubMed ID: 14653160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oligodendrocyte-spinal cord explant co-culture: an in vitro model for the study of myelination.
    Chen Z; Ma Z; Wang Y; Li Y; Lü H; Fu S; Hang Q; Lu PH
    Brain Res; 2010 Jan; 1309():9-18. PubMed ID: 19879858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Murine spinal cord explants: a model for evaluating axonal growth and myelination in vitro.
    Thomson CE; Hunter AM; Griffiths IR; Edgar JM; McCulloch MC
    J Neurosci Res; 2006 Dec; 84(8):1703-15. PubMed ID: 17075918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1993 Sep; 123(1):118-32. PubMed ID: 8405272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord.
    Imaizumi T; Lankford KL; Kocsis JD
    Brain Res; 2000 Jan; 854(1-2):70-8. PubMed ID: 10784108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery?
    Waxman SG
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S105-17. PubMed ID: 1588601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord.
    Shi R; Blight AR
    Neuroscience; 1997 Mar; 77(2):553-62. PubMed ID: 9472411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Axonal remyelination by cord blood stem cells after spinal cord injury.
    Dasari VR; Spomar DG; Gondi CS; Sloffer CA; Saving KL; Gujrati M; Rao JS; Dinh DH
    J Neurotrauma; 2007 Feb; 24(2):391-410. PubMed ID: 17376002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana).
    Wang XM; Qin YQ; Terman JR; Martin GF
    Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conduction properties of spinal cord axons in the myelin-deficient rat mutant.
    Utzschneider D; Black JA; Kocsis JD
    Neuroscience; 1992 Jul; 49(1):221-8. PubMed ID: 1407548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional connections are established in the deafferented rat spinal cord by peripherally transplanted human embryonic sensory neurons.
    Levinsson A; Holmberg H; Schouenborg J; Seiger A; Aldskogius H; Kozlova EN
    Eur J Neurosci; 2000 Oct; 12(10):3589-95. PubMed ID: 11029629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord.
    Imaizumi T; Lankford KL; Waxman SG; Greer CA; Kocsis JD
    J Neurosci; 1998 Aug; 18(16):6176-85. PubMed ID: 9698311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracellular potassium activity and axonal conduction in spinal cord of the myelin-deficient mutant rat.
    Young W; Rosenbluth J; Wojak JC; Sakatani K; Kim H
    Exp Neurol; 1989 Oct; 106(1):41-51. PubMed ID: 2551718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal cord repair in neonatal rats: a correlation between axonal regeneration and functional recovery.
    Hase T; Kawaguchi S; Hayashi H; Nishio T; Mizoguchi A; Nakamura T
    Eur J Neurosci; 2002 Mar; 15(6):969-74. PubMed ID: 11918656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection.
    Bregman BS
    Brain Res; 1987 Aug; 431(2):265-79. PubMed ID: 3620991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord.
    Savio T; Schwab ME
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4130-3. PubMed ID: 2349222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.