These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7886230)

  • 1. Electrophysiological and metabolic interactions between axons and glia in crayfish and squid.
    Lieberman EM; Hargittai PT; Grossfeld RM
    Prog Neurobiol; 1994 Nov; 44(4):333-76. PubMed ID: 7886230
    [No Abstract]   [Full Text] [Related]  

  • 2. Potassium homeostasis in the nervous system of cephalopods and crustacea.
    Pichon Y; Abbott NJ; Lieberman EM; Larmet Y
    J Physiol (Paris); 1987; 82(4):346-56. PubMed ID: 3503934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon-glia interactions in the crayfish: glial cell oxygen consumption is tightly coupled to axon metabolism.
    Hargittai PT; Lieberman EM
    Glia; 1991; 4(4):417-23. PubMed ID: 1834562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of axon-glial cell interactions and periaxonal K- homeostasis--I. The influence of Na+, K+, Cl- and cholinergic agents on the membrane potential of the adaxonal glia of the crayfish medial giant axon.
    Brunder DG; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):951-9. PubMed ID: 3405436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and release of N-acetylaspartylglutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling.
    Urazaev AK; Grossfeld RM; Fletcher PL; Speno H; Gafurov BS; Buttram JG; Lieberman EM
    Neuroscience; 2001; 106(1):237-47. PubMed ID: 11564433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.
    Hassan S; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):961-9. PubMed ID: 3405437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamine cycle enzymes in the crayfish giant nerve fiber: implications for axon-to-glia signaling.
    McKinnon E; Hargittai PT; Grossfeld RM; Lieberman EM
    Glia; 1995 Jul; 14(3):198-208. PubMed ID: 7591031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber.
    Beshay JE; Hahn P; Beshay VE; Hargittai PT; Lieberman EM
    Glia; 2005 Aug; 51(2):121-31. PubMed ID: 15789432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression in the squid giant axon: neurotransmitter modulation of RNA transfer from periaxonal glia to the axon.
    Giuditta A; Eyman M; Kaplan BB
    Biol Bull; 2002 Oct; 203(2):189-90. PubMed ID: 12414570
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of N-acetylaspartyl-glutamate (NAAG) and N-acetylaspartate (NAA) in axons and glia of the crayfish medial giant nerve fiber.
    Lieberman EM; Achreja M; Urazaev AK
    Adv Exp Med Biol; 2006; 576():303-15; discussion 361-3. PubMed ID: 16802722
    [No Abstract]   [Full Text] [Related]  

  • 11. The periaxonal space of crayfish giant axons.
    Shrager P; Starkus JC; Lo MV; Peracchia C
    J Gen Physiol; 1983 Aug; 82(2):221-44. PubMed ID: 6311939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and metabolism of glutamate at non-synaptic regions of crayfish central nerve fibers: implications for axon-glia signaling.
    Kane LS; Buttram JG; Urazaev AK; Lieberman EM; Grossfeld RM
    Neuroscience; 2000; 97(3):601-9. PubMed ID: 10828542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--III. The effect of anisosmotic media and potassium on the relationship between the resistance in series with the axon membrane and glial cell volume.
    Lieberman EM; Hassan S
    Neuroscience; 1988 Jun; 25(3):971-81. PubMed ID: 3405438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamine uptake and metabolism to N-acetylaspartylglutamate (NAAG) by crayfish axons and glia.
    Buttram JG; Engler JA; Grossfeld RM; Urazaev AKh; Lieberman EM
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Oct; 133(2):209-20. PubMed ID: 12381383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent labeling of the glial sheath of giant nerve fibers.
    Eddleman CS; Godell CM; Fishman HM; Tytell M; Bittner GD
    Biol Bull; 1995; 189(2):218-9. PubMed ID: 8541411
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of glutamate in axon-Schwann cell signaling in the squid.
    Lieberman EM
    Ann N Y Acad Sci; 1991; 633():448-57. PubMed ID: 1686382
    [No Abstract]   [Full Text] [Related]  

  • 17. Developmental neurobiology of invertebrates.
    Anderson H; Edwards JS; Palka J
    Annu Rev Neurosci; 1980; 3():97-139. PubMed ID: 6998346
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons.
    Ota M; Narahashi T; Keeler RF
    J Pharmacol Exp Ther; 1973 Jan; 184(1):143-54. PubMed ID: 4686003
    [No Abstract]   [Full Text] [Related]  

  • 19. Long-term survival of severed crayfish giant axons is not associated with an incorporation of glial nuclei into axoplasm.
    Sheller RA; Ballinger ML; Bittner GD
    Neurosci Lett; 1991 Nov; 133(1):113-6. PubMed ID: 1724309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axon-glia interactions: building a smart nerve fiber.
    Waxman SG
    Curr Biol; 1997 Jul; 7(7):R406-10. PubMed ID: 9210363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.