These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7886855)

  • 1. Ultrasonic spectroscopy of the porcine eye lens.
    van der Steen AF; de Korte CL; Thijssen JM
    Ultrasound Med Biol; 1994; 20(9):967-74. PubMed ID: 7886855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between local acoustic parameters and protein distribution in human and porcine eye lenses.
    De Korte CL; Van Der Steen AF; Thijssen JM; Duindam JJ; Otto C; Puppels GJ
    Exp Eye Res; 1994 Nov; 59(5):617-27. PubMed ID: 9492763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the acoustic properties of the lens using a high-frequency ultrasonic needle transducer.
    Huang CC; Zhou Q; Ameri H; Wu DW; Sun L; Wang SH; Humayun MS; Shung KK
    Ultrasound Med Biol; 2007 Dec; 33(12):1971-7. PubMed ID: 17673358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardness and ultrasonic characteristics of the human crystalline lens.
    Tabandeh H; Wilkins M; Thompson G; Nassiri D; Karim A
    J Cataract Refract Surg; 2000 Jun; 26(6):838-41. PubMed ID: 10889428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of lens hardness in cataract surgery using high-frequency ultrasonic parameters in vitro.
    Huang CC; Ameri H; Deboer C; Rowley AP; Xu X; Sun L; Wang SH; Humayun MS; Shung KK
    Ultrasound Med Biol; 2007 Oct; 33(10):1609-16. PubMed ID: 17618041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken.
    Tattersall RJ; Prashar A; Singh KD; Tokarczuk PF; Erichsen JT; Hocking PM; Guggenheim JA
    Mol Vis; 2010 Feb; 16():144-53. PubMed ID: 20142845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force.
    Erpelding TN; Hollman KW; O'Donnell M
    Exp Eye Res; 2007 Feb; 84(2):332-41. PubMed ID: 17141220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer.
    Huang CC; Chen R; Tsui PH; Zhou Q; Humayun MS; Shung KK
    Phys Med Biol; 2009 Oct; 54(19):5981-94. PubMed ID: 19759408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro.
    Tsui PH; Huang CC; Chang CC; Wang SH; Shung KK
    Phys Med Biol; 2007 Nov; 52(21):6413-25. PubMed ID: 17951852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Temperature Rise within the Lens of the Porcine Eye Caused by Ultrasound Insonation.
    King RL; Liu Y; Harris GR
    Ultrasound Med Biol; 2017 Feb; 43(2):476-481. PubMed ID: 27817969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional ultrasound imaging. Clinical applications.
    Cusumano A; Coleman DJ; Silverman RH; Reinstein DZ; Rondeau MJ; Ursea R; Daly SM; Lloyd HO
    Ophthalmology; 1998 Feb; 105(2):300-6. PubMed ID: 9479291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic and biochemical evaluation of human diabetic lens.
    Raitelaitiene R; Paunksnis A; Ivanov L; Kurapkiene S
    Medicina (Kaunas); 2005; 41(8):641-8. PubMed ID: 16160411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring optical properties of an eye lens using magnetic resonance imaging.
    Jones CE; Pope JM
    Magn Reson Imaging; 2004 Feb; 22(2):211-20. PubMed ID: 15010113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy.
    Reiss S; Sperlich K; Hovakimyan M; Martius P; Guthoff RF; Stolz H; Stachs O
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2348-54. PubMed ID: 22711764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The refractive index and protein distribution in the blue eye trevally lens.
    Pierscionek BK; Augusteyn RC
    J Am Optom Assoc; 1995 Dec; 66(12):739-43. PubMed ID: 8557951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic velocity and attenuation of eye tissues at 20 MHz.
    de Korte CL; van der Steen AF; Thijssen JM
    Ultrasound Med Biol; 1994; 20(5):471-80. PubMed ID: 7941104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axial ultrasound B-scans of the entire eye with a 20-MHz linear array: correction of crystalline lens phase aberration by applying Fermat's principle.
    Mateo T; Chang A; Mofid Y; Pisella PJ; Ossant F
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2149-66. PubMed ID: 24988589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light.
    Pierscionek BK; Belaidi A; Bruun HH
    Eye (Lond); 2005 Apr; 19(4):375-81. PubMed ID: 15319785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The measurement of eye axial length by ultrasound].
    Yang J; Song X; Wang Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 1997 Jan; 21(1):24-5. PubMed ID: 9644137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and interobserver reliability of lens equatorial length measurement using 35-MHz ultrasound biomicroscopy in dogs with cataract.
    Barbé C; Harran N; Goulle F
    Vet Ophthalmol; 2017 Jul; 20(4):329-334. PubMed ID: 27520856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.