These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 7886951)
1. A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant. Moody MD; Pettit SC; Shao W; Everitt L; Loeb DD; Hutchison CA; Swanstrom R Virology; 1995 Mar; 207(2):475-85. PubMed ID: 7886951 [TBL] [Abstract][Full Text] [Related]
2. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406 [TBL] [Abstract][Full Text] [Related]
3. Naturally occurring amino acid polymorphisms in human immunodeficiency virus type 1 (HIV-1) Gag p7(NC) and the C-cleavage site impact Gag-Pol processing by HIV-1 protease. Goodenow MM; Bloom G; Rose SL; Pomeroy SM; O'Brien PO; Perez EE; Sleasman JW; Dunn BM Virology; 2002 Jan; 292(1):137-49. PubMed ID: 11878916 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the protease gene of human immunodeficiency virus type 1 affect release and stability of virus particles. Park J; Morrow CD Virology; 1993 Jun; 194(2):843-50. PubMed ID: 8503189 [TBL] [Abstract][Full Text] [Related]
5. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Quillent C; Borman AM; Paulous S; Dauguet C; Clavel F Virology; 1996 May; 219(1):29-36. PubMed ID: 8623542 [TBL] [Abstract][Full Text] [Related]
6. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence. Tözsér J; Shulenin S; Louis JM; Copeland TD; Oroszlan S Biochemistry; 2004 Apr; 43(14):4304-12. PubMed ID: 15065874 [TBL] [Abstract][Full Text] [Related]
7. In vivo processing of Pr160gag-pol from human immunodeficiency virus type 1 (HIV) in acutely infected, cultured human T-lymphocytes. Lindhofer H; von der Helm K; Nitschko H Virology; 1995 Dec; 214(2):624-7. PubMed ID: 8553565 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease? Towler EM; Gulnik SV; Bhat TN; Xie D; Gustschina E; Sumpter TR; Robertson N; Jones C; Sauter M; Mueller-Lantzsch N; Debouck C; Erickson JW Biochemistry; 1998 Dec; 37(49):17137-44. PubMed ID: 9860826 [TBL] [Abstract][Full Text] [Related]
10. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985 [TBL] [Abstract][Full Text] [Related]
11. An E. coli expression system which detoxifies the HIV protease. Korant BD; Rizzo CJ Biomed Biochim Acta; 1991; 50(4-6):643-6. PubMed ID: 1801736 [TBL] [Abstract][Full Text] [Related]
12. Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Louis JM; Clore GM; Gronenborn AM Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100 [TBL] [Abstract][Full Text] [Related]
13. Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli. Strickler JE; Gorniak J; Dayton B; Meek T; Moore M; Magaard V; Malinowski J; Debouck C Proteins; 1989; 6(2):139-54. PubMed ID: 2695927 [TBL] [Abstract][Full Text] [Related]
14. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis. Strisovsky K; Tessmer U; Langner J; Konvalinka J; Kräusslich HG Protein Sci; 2000 Sep; 9(9):1631-41. PubMed ID: 11045610 [TBL] [Abstract][Full Text] [Related]
16. A heterologous substrate assay for the HIV-1 protease engineered in Escherichia coli. Stebbins J; Deckman IC; Richardson SB; Debouck C Anal Biochem; 1996 Nov; 242(1):90-4. PubMed ID: 8923970 [TBL] [Abstract][Full Text] [Related]
17. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins. Wu X; Liu H; Xiao H; Kappes JC Virology; 1996 May; 219(1):307-13. PubMed ID: 8623547 [TBL] [Abstract][Full Text] [Related]
18. Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease. Wondrak EM; Louis JM Biochemistry; 1996 Oct; 35(39):12957-62. PubMed ID: 8841142 [TBL] [Abstract][Full Text] [Related]
19. Analysis of protein expression and virus-like particle formation in mammalian cell lines stably expressing HIV-1 gag and env gene products with or without active HIV proteinase. Kräusslich HG; Ochsenbauer C; Traenckner AM; Mergener K; Fäcke M; Gelderblom HR; Bosch V Virology; 1993 Feb; 192(2):605-17. PubMed ID: 8421902 [TBL] [Abstract][Full Text] [Related]
20. Prediction of human immunodeficiency virus protease cleavage sites in proteins. Chou KC Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]