These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 7886960)
1. Identification of a coat protein binding site on southern bean mosaic virus RNA. Hacker DL Virology; 1995 Mar; 207(2):562-5. PubMed ID: 7886960 [TBL] [Abstract][Full Text] [Related]
2. Mapping and expression of southern bean mosaic virus genomic and subgenomic RNAs. Hacker DL; Sivakumaran K Virology; 1997 Aug; 234(2):317-27. PubMed ID: 9268164 [TBL] [Abstract][Full Text] [Related]
3. Studies on hybrid comoviruses reveal the importance of three-dimensional structure for processing of the viral coat proteins and show that the specificity of cleavage is greater in trans than in cis. Clark AJ; Bertens P; Wellink J; Shanks M; Lomonossoff GP Virology; 1999 Oct; 263(1):184-94. PubMed ID: 10544093 [TBL] [Abstract][Full Text] [Related]
4. Identification of viral genes required for cell-to-cell movement of southern bean mosaic virus. Sivakumaran K; Fowler BC; Hacker DL Virology; 1998 Dec; 252(2):376-86. PubMed ID: 9878617 [TBL] [Abstract][Full Text] [Related]
5. Structure and assembly of turnip crinkle virus. VI. Identification of coat protein binding sites on the RNA. Wei N; Heaton LA; Morris TJ; Harrison SC J Mol Biol; 1990 Jul; 214(1):85-95. PubMed ID: 2370670 [TBL] [Abstract][Full Text] [Related]
6. Partially folded states of the capsid protein of cowpea severe mosaic virus in the disassembly pathway. Gaspar LP; Johnson JE; Silva JL; Da Poian AT J Mol Biol; 1997 Oct; 273(2):456-66. PubMed ID: 9344752 [TBL] [Abstract][Full Text] [Related]
7. Complementation of the host range restriction of southern cowpea mosaic virus in bean by southern bean mosaic virus. Hacker DL; Fowler BC Virology; 2000 Jan; 266(1):140-9. PubMed ID: 10612668 [TBL] [Abstract][Full Text] [Related]
8. Membrane activity of the southern cowpea mosaic virus coat protein: the role of basic amino acids, helix-forming potential, and lipid composition. Lee SK; Dabney-Smith C; Hacker DL; Bruce BD Virology; 2001 Dec; 291(2):299-310. PubMed ID: 11878899 [TBL] [Abstract][Full Text] [Related]
9. Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo. Grdzelishvili VZ; Chapman SN; Dawson WO; Lewandowski DJ Virology; 2000 Sep; 275(1):177-92. PubMed ID: 11017798 [TBL] [Abstract][Full Text] [Related]
10. The complete nucleotide sequence of prune dwarf ilarvirus RNA 3: implications for coat protein activation of genome replication in ilarviruses. Bachman EJ; Scott SW; Xin G; Vance VB Virology; 1994 May; 201(1):127-31. PubMed ID: 8178476 [TBL] [Abstract][Full Text] [Related]
11. In vitro analysis of an RNA binding site within the N-terminal 30 amino acids of the southern cowpea mosaic virus coat protein. Lee SK; Hacker DL Virology; 2001 Aug; 286(2):317-27. PubMed ID: 11485399 [TBL] [Abstract][Full Text] [Related]
12. Complete nucleotide sequence of Sesbania mosaic virus: a new virus species of the genus Sobemovirus. Lokesh GL; Gopinath K; Satheshkumar PS; Savithri HS Arch Virol; 2001; 146(2):209-23. PubMed ID: 11315633 [TBL] [Abstract][Full Text] [Related]
13. 3'-terminal nucleotide sequences important for the accumulation of cowpea mosaic virus M-RNA. Rohll JB; Holness CL; Lomonossoff GP; Maule AJ Virology; 1993 Apr; 193(2):672-9. PubMed ID: 8460480 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous nuclear ribonucleoprotein I (hnRNP-I/PTB) selectively binds the conserved 3' terminus of hepatitis C viral RNA. Chung RT; Kaplan LM Biochem Biophys Res Commun; 1999 Jan; 254(2):351-62. PubMed ID: 9918842 [TBL] [Abstract][Full Text] [Related]
15. Expression of an animal virus antigenic site on the surface of a plant virus particle. Usha R; Rohll JB; Spall VE; Shanks M; Maule AJ; Johnson JE; Lomonossoff GP Virology; 1993 Nov; 197(1):366-74. PubMed ID: 7692669 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide sequence of the bean strain of southern bean mosaic virus. Othman Y; Hull R Virology; 1995 Jan; 206(1):287-97. PubMed ID: 7831784 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of the binding of turnip crinkle virus coat protein to RNA fails to demonstrate binding specificity but reveals a highly cooperative assembly interaction. Skuzeski JM; Morris TJ Virology; 1995 Jun; 210(1):82-90. PubMed ID: 7793083 [TBL] [Abstract][Full Text] [Related]
18. Two histidines of the coat protein of turnip yellow mosaic virus at the capsid interior are crucial for viability. Bink HH; Roepan SK; Pleij CW Proteins; 2004 May; 55(2):236-44. PubMed ID: 15048817 [TBL] [Abstract][Full Text] [Related]
19. Evidence for participation of RNA 1-encoded elicitor in Cowpea mosaic virus-mediated concurrent protection. Bruening G; Buzayan JM; Ferreiro C; Lim W Virology; 2000 Jan; 266(2):299-309. PubMed ID: 10639316 [TBL] [Abstract][Full Text] [Related]
20. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Gopinath K; Wellink J; Porta C; Taylor KM; Lomonossoff GP; van Kammen A Virology; 2000 Feb; 267(2):159-73. PubMed ID: 10662612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]