These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 7887593)
21. The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae. Trevisol ET; Panek AD; Mannarino SC; Eleutherio EC Appl Microbiol Biotechnol; 2011 Apr; 90(2):697-704. PubMed ID: 21243352 [TBL] [Abstract][Full Text] [Related]
22. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough. Zhang CY; Bai XW; Lin X; Liu XE; Xiao DG J Food Sci; 2015 Dec; 80(12):M2879-85. PubMed ID: 26580148 [TBL] [Abstract][Full Text] [Related]
23. Sun X; Zhang J; Fan ZH; Xiao P; Liu SN; Li RP; Zhu WB; Huang L J Agric Food Chem; 2019 Aug; 67(32):8986-8993. PubMed ID: 31347835 [TBL] [Abstract][Full Text] [Related]
24. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Teunissen A; Dumortier F; Gorwa MF; Bauer J; Tanghe A; Loïez A; Smet P; Van Dijck P; Thevelein JM Appl Environ Microbiol; 2002 Oct; 68(10):4780-7. PubMed ID: 12324320 [TBL] [Abstract][Full Text] [Related]
25. Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker's yeast in lean dough. Zhang CY; Lin X; Song HY; Xiao DG World J Microbiol Biotechnol; 2015 Aug; 31(8):1241-9. PubMed ID: 26003653 [TBL] [Abstract][Full Text] [Related]
26. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
27. Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae. Lucero P; Peñalver E; Moreno E; Lagunas R Appl Environ Microbiol; 2000 Oct; 66(10):4456-61. PubMed ID: 11010898 [TBL] [Abstract][Full Text] [Related]
28. Improved properties of baker's yeast mutants resistant to 2-deoxy-D-glucose. Rincón AM; Codón AC; Castrejón F; Benítez T Appl Environ Microbiol; 2001 Sep; 67(9):4279-85. PubMed ID: 11526034 [TBL] [Abstract][Full Text] [Related]
29. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027 [TBL] [Abstract][Full Text] [Related]
30. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Shima J; Takagi H Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439 [TBL] [Abstract][Full Text] [Related]
31. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Magalhães F; Calton A; Heiniö RL; Gibson B Food Microbiol; 2021 Apr; 94():103640. PubMed ID: 33279066 [TBL] [Abstract][Full Text] [Related]
32. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production. López-Alvarez A; Díaz-Pérez AL; Sosa-Aguirre C; Macías-Rodríguez L; Campos-García J J Biosci Bioeng; 2012 May; 113(5):614-8. PubMed ID: 22280963 [TBL] [Abstract][Full Text] [Related]
33. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852 [TBL] [Abstract][Full Text] [Related]
34. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Sasano Y; Haitani Y; Hashida K; Oshiro S; Shima J; Takagi H Int J Food Microbiol; 2013 Aug; 165(3):241-5. PubMed ID: 23800735 [TBL] [Abstract][Full Text] [Related]
35. The development of low temperature inactive (Lti) baker's yeast. Gysler C; Niederberger P Appl Microbiol Biotechnol; 2002 Feb; 58(2):210-6. PubMed ID: 11876414 [TBL] [Abstract][Full Text] [Related]
36. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
37. Studies on yeast metabolism. 5. The trehalose content of baker's yeast during anaerobic fermentation. TREVELYAN WE; HARRISON JS Biochem J; 1956 Feb; 62(2):177-83. PubMed ID: 13293170 [No Abstract] [Full Text] [Related]
38. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Hounsa CG; Brandt EV; Thevelein J; Hohmann S; Prior BA Microbiology (Reading); 1998 Mar; 144 ( Pt 3)():671-680. PubMed ID: 9534237 [TBL] [Abstract][Full Text] [Related]
39. [Increase of rising activity of commercial yeasts by application of stress conditions during their propagation]. Galvagno MA; Cerrutti P Rev Argent Microbiol; 2004; 36(1):41-6. PubMed ID: 15174749 [TBL] [Abstract][Full Text] [Related]
40. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. Chen A; Gibney PA J Appl Microbiol; 2022 Oct; 133(4):2390-2402. PubMed ID: 35801661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]