These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 7887711)
1. Overview of the nature of vasoconstriction in arterial grafts for coronary operations. He GW; Yang CQ; Starr A Ann Thorac Surg; 1995 Mar; 59(3):676-83. PubMed ID: 7887711 [TBL] [Abstract][Full Text] [Related]
2. Functional comparison between the human inferior epigastric artery and internal mammary artery. Similarities and differences. He GW; Acuff TE; Ryan WH; Yang CQ; Mack MJ J Thorac Cardiovasc Surg; 1995 Jan; 109(1):13-20. PubMed ID: 7815788 [TBL] [Abstract][Full Text] [Related]
3. Greater contractility of internal mammary artery bifurcation: possible cause of low patency rates. He GW; Ryan WH; Acuff TE; Yang CQ; Mack MJ Ann Thorac Surg; 1994 Aug; 58(2):529-32. PubMed ID: 8067857 [TBL] [Abstract][Full Text] [Related]
4. Effect of thromboxane A2 antagonist GR32191B on prostanoid and nonprostanoid receptors in the human internal mammary artery. He GW; Yang CQ J Cardiovasc Pharmacol; 1995 Jul; 26(1):13-9. PubMed ID: 7564353 [TBL] [Abstract][Full Text] [Related]
5. The comparison of the responsiveness of human isolated internal mammary and gastroepiploic arteries to levcromakalim: an alternative approach to the management of graft spasm. Akar F; Uydeş-Dogan BS; Tufan H; Aşlamaci S; Köksoy C; Kanzik I Br J Clin Pharmacol; 1997 Jul; 44(1):49-56. PubMed ID: 9241096 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of nisoldipine and nitroglycerin on human internal mammary artery. Liu JJ; Johnston CI; Buxton BF J Pharmacol Exp Ther; 1994 Jan; 268(1):434-40. PubMed ID: 8301585 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of vasoconstriction by phosphodiesterase III inhibitor milrinone in human conduit arteries used as coronary bypass grafts. He GW; Yang CQ J Cardiovasc Pharmacol; 1996 Aug; 28(2):208-14. PubMed ID: 8856475 [TBL] [Abstract][Full Text] [Related]
8. Contractility of the human internal mammary artery at the distal section increases toward the end. Emphasis on not using the end of the internal mammary artery for grafting. He GW J Thorac Cardiovasc Surg; 1993 Sep; 106(3):406-11. PubMed ID: 8361180 [TBL] [Abstract][Full Text] [Related]
9. Thromboxane receptor stimulation suppresses guanylate cyclase-mediated relaxation of radial arteries. Arshad M; Vijay V; Floyd BC; Marks B; Sarabu MR; Wolin MS; Gupte SA Ann Thorac Surg; 2006 Jun; 81(6):2147-54. PubMed ID: 16731144 [TBL] [Abstract][Full Text] [Related]
10. Comparison among arterial grafts and coronary artery. An attempt at functional classification. He GW; Yang CQ J Thorac Cardiovasc Surg; 1995 Apr; 109(4):707-15. PubMed ID: 7715218 [TBL] [Abstract][Full Text] [Related]
11. Vasoreactivity of the radial artery. Comparison with the internal mammary and gastroepiploic arteries with implications for coronary artery surgery. Chardigny C; Jebara VA; Acar C; Descombes JJ; Verbeuren TJ; Carpentier A; Fabiani JN Circulation; 1993 Nov; 88(5 Pt 2):II115-27. PubMed ID: 8222146 [TBL] [Abstract][Full Text] [Related]
13. Functional comparison of the human isolated femoral artery, internal mammary artery, gastroepiploic artery, and saphenous vein. Cracowski JL; Stanke-Labesque F; Sessa C; Hunt M; Chavanon O; Devillier P; Bessard G Can J Physiol Pharmacol; 1999 Oct; 77(10):770-6. PubMed ID: 10588481 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of vasoconstriction by AJ-2615, a novel calcium antagonist with alpha(1)-adrenergic receptor blocking activity in human conduit arteries used as bypass grafts. Liu MH; Floten SH; Yang Q; He GW Br J Clin Pharmacol; 2001 Sep; 52(3):279-87. PubMed ID: 11560560 [TBL] [Abstract][Full Text] [Related]
15. [Vaso-reactive properties of radial and internal mammary arteries: application to coronary bypass surgery]. Chardigny C; Jebara V; Descombes JJ; Acar C; Verbeuren T; Fabiani JN Arch Mal Coeur Vaiss; 1994 Sep; 87(9):1185-93. PubMed ID: 7646232 [TBL] [Abstract][Full Text] [Related]
16. Regulation of human internal mammary and radial artery contraction by extracellular and intracellular calcium channels and cyclic adenosine 3', 5' monophosphate. Rabbani G; Vijay V; Sarabu MR; Gupte SA Ann Thorac Surg; 2007 Feb; 83(2):510-5. PubMed ID: 17257979 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms Responsible for Serotonin Vascular Reactivity Sex Differences in the Internal Mammary Artery. Lamin V; Jaghoori A; Jakobczak R; Stafford I; Heresztyn T; Worthington M; Edwards J; Viana F; Stuklis R; Wilson DP; Beltrame JF J Am Heart Assoc; 2018 Jul; 7(14):. PubMed ID: 29987120 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of vasoconstriction by potassium channel opener aprikalim in human conduit arteries used as bypass grafts. He GW; Yang CQ Br J Clin Pharmacol; 1997 Oct; 44(4):353-9. PubMed ID: 9354310 [TBL] [Abstract][Full Text] [Related]
19. Coronary artery constriction by the isoprostane 8-epi prostaglandin F2 alpha. Kromer BM; Tippins JR Br J Pharmacol; 1996 Nov; 119(6):1276-80. PubMed ID: 8937734 [TBL] [Abstract][Full Text] [Related]
20. Involvement of protein kinase C in reduced relaxant responses to the NO/cyclic GMP pathway in piglet pulmonary arteries contracted by the thromboxane A2-mimetic U46619. Pérez-Vizcaíno F; Villamor E; Duarte J; Tamargo J Br J Pharmacol; 1997 Aug; 121(7):1323-33. PubMed ID: 9257910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]