These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 788792)
1. Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis. Jacobs NJ; Jacobs JM Biochim Biophys Acta; 1976 Oct; 449(1):1-9. PubMed ID: 788792 [TBL] [Abstract][Full Text] [Related]
2. Evidence for involvement of the electron transport system at a late step of anaerobic microbial heme synthesis. Jacobs NJ; Jacobs JM Biochim Biophys Acta; 1977 Jan; 459(1):141-4. PubMed ID: 318855 [TBL] [Abstract][Full Text] [Related]
3. Quinones as hydrogen carriers for a late step in anaerobic heme biosynthesis in Escherichia coli. Jacobs NJ; Jacobs JM Biochim Biophys Acta; 1978 Dec; 544(3):540-6. PubMed ID: 365243 [TBL] [Abstract][Full Text] [Related]
4. Effect of oxygen on heme and porphyrin accumulation from delta-aminolevulinic acid by suspensions of anaerobically grown Staphylococcus epidermidis. Jacobs NJ; Jacobs JM; Sheng GS J Bacteriol; 1969 Jul; 99(1):37-41. PubMed ID: 5802617 [TBL] [Abstract][Full Text] [Related]
5. Effect of nitrate, fumarate, and oxygen on the formation of the membrane-bound electron transport system of Haemophilus parainfluenzae. Sinclair PR; White DC J Bacteriol; 1970 Feb; 101(2):365-72. PubMed ID: 4313051 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the late steps of microbial heme synthesis: conversion of coproporphyrinogen to protoporphyrin. Jacobs NJ; Jacobs JM; Brent P J Bacteriol; 1971 Jul; 107(1):203-9. PubMed ID: 4935319 [TBL] [Abstract][Full Text] [Related]
7. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. Maier TM; Myers CR BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product. Jones HM; Gunsalus RP J Bacteriol; 1987 Jul; 169(7):3340-9. PubMed ID: 3298218 [TBL] [Abstract][Full Text] [Related]
9. Comparative effect of oxygen and nitrate on protoporphyrin and heme synthesis from delta-amino levulinic acid in bacterial cultures. Jacobs NJ; Jacobs JM; Morgan HE J Bacteriol; 1972 Dec; 112(3):1444-5. PubMed ID: 4629659 [TBL] [Abstract][Full Text] [Related]
10. Formation of protoporphyrin from coproporphyrinogen in extracts of various bacteria. Jacobs NJ; Jacobs JM; Brent P J Bacteriol; 1970 May; 102(2):398-403. PubMed ID: 4986760 [TBL] [Abstract][Full Text] [Related]
11. Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli. Jacobs NJ; Jacobs JM Biochem Biophys Res Commun; 1975 Jul; 65(1):435-41. PubMed ID: 1096891 [No Abstract] [Full Text] [Related]
12. Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from Escherichia coli as demonstrated by quenching of atebrin fluorescence. Haddock BA; Kendall-Tobias MW Biochem J; 1975 Dec; 152(3):655-9. PubMed ID: 776172 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic respiration of Escherichia coli in the mouse intestine. Jones SA; Gibson T; Maltby RC; Chowdhury FZ; Stewart V; Cohen PS; Conway T Infect Immun; 2011 Oct; 79(10):4218-26. PubMed ID: 21825069 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system. Engel P; Krämer R; Unden G J Bacteriol; 1992 Sep; 174(17):5533-9. PubMed ID: 1512189 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic transport in Escherichia coli membrane vesicles. Konings WN; Kaback HR Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3376-81. PubMed ID: 4587250 [TBL] [Abstract][Full Text] [Related]
16. The frdR gene of Escherichia coli globally regulates several operons involved in anaerobic growth in response to nitrate. Kalman LV; Gunsalus RP J Bacteriol; 1988 Feb; 170(2):623-9. PubMed ID: 3276662 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. Kistler WS; Lin EC J Bacteriol; 1971 Dec; 108(3):1224-34. PubMed ID: 4945192 [TBL] [Abstract][Full Text] [Related]
18. The late steps of anaerobic heme biosynthesis in E. coli: role for quinones in protoporphyrinogen oxidation. Jacobs JM; Jacobs NJ Biochem Biophys Res Commun; 1977 Sep; 78(1):429-33. PubMed ID: 334168 [No Abstract] [Full Text] [Related]
19. Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Narita S; Taketani S; Inokuchi H Mol Gen Genet; 1999 Jul; 261(6):1012-20. PubMed ID: 10485293 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Singh AP; Bragg PD Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]